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Preface

Research in computer vision has exponentially increased in the last two decades due to the 
availability of cheap cameras and fast processors. This increase has also been accompanied 
by a blurring of the boundaries between the different applications of vision, making it truly 
interdisciplinary. In this book we have attempted to put together state-of-the-art research 
and developments in segmentation and pattern recognition.  
The first nine chapters on segmentation deal with advanced algorithms and models, and 
various applications of segmentation in robot path planning, human face tracking, etc. The 
later chapters are devoted to pattern recognition and covers diverse topics ranging from bio-
logical image analysis, remote sensing, text recognition, advanced filter design for data 
analysis, etc.  
We would like to thank all the authors for entrusting us with their best work.  
The editors would also like to express their sincere gratitude to the anonymous reviewers 
with out whose sincere efforts this book would not have been possible. The contributions of 
the editorial members of Advanced Robotic Systems Publishers, responsible for collection of 
manuscripts, correspondence etc., are also sincerely acknowledged.  

We hope that you will enjoy reading this book. 

Editors

Goro Obinata 
Centre for Cooperative Research in Advanced Science and Technology 

Nagoya University, Japan 

Ashish Dutta 
Dept. of Mechanical Science and Engineering  

Nagoya University, Japan 
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Energy Feature Integration for Motion 
Segmentation

Raquel Dosil, Xosé R. Fdez-Vidal, Xosé M. Pardo & Antón García 
Universidade de Santiago de Compostela 

Spain

1. Introduction 

This chapter deals with the problem of segmentation of apparent-motion. Apparent-motion 
segmentation can be stated as the identification and classification of regions undergoing the 
same motion pattern along a video sequence. Motion segmentation has a great importance 
in robotic applications such as autonomous navigation and active vision. In autonomous 
navigation, motion segmentation is used in identifying mobile obstacles and estimating their 
motion parameters to predict trajectories. In active vision, the system must identify its target 
and control the cameras to track it. Usually, segmentation is based on some low level feature 
describing the motion of each pixel in a video frame. So far, the variety of approaches to 
deal with the problems of motion feature extraction and motion segmentation that has been 
proposed in literature is huge. However, all of them suffer from different shortcomings and 
up to date there is no completely satisfactory solution.  
Recent approaches to motion segmentation include, for example, that of Sato and Aggarwal 
(Sato & Aggarwal, 2004), where they define the Temporal Spatio-Velocity (TSV) transform 
as a Hough transform evaluated over windowed spatio-temporal images. Segmentation is 
accomplished by thresholding of the TSV image. Each resulting blob represents a motion 
pattern. This solution has proved to be very robust to occlusions, noise, low contrast, etc. Its 
main drawback is that it is limited to translational motion with constant velocity. 
It is very common to use a Kalman filter to estimate velocity parameters from intensity 
observations (Boykov & Huttenlocher, 2000). Kalman filtering alone presents severe 
problems with occlusions and abrupt changes, like large inter-frame displacements or 
deformations of the object. If a prior model is available, the combined use of Kalman 
filtering and template matching is the typical approach to deal with occlusions. For instance, 
Kervrann and Heitz (1998) define an a priori model with global and local deformations. 
They apply matching with spatial features for initialization and reinitialization of global 
rigid transformation and local deformation parameters in case of abrupt changes and 
Kalman filtering for tracking otherwise. Nguyen and Smeulders (2004) perform template 
matching and updating by means of Kalman filtering.  
Template matching can deal even with total occlusions during a period of several frames. 
Nevertheless, when no prior model is available, the most common approach is statistical 
region classification, like Bayesian clustering (Chang et al., 1997; Montoliu and Pla, 2005). 
These techniques are very sensitive to noise and aliasing. Furthermore, they do not provide 
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a method for correlating the segmentations obtained for different frames to deal with 
tracking. Tracking is straightforward when the identified regions keep constant motion 
parameters along the sequence and different objects undergo different motion patterns. 
Otherwise, it is difficult to know the correspondences between the regions extracted from 
different frames, especially when large displacements or occlusions take place.  
An early approach by Wang and Adelson (1994) tackle this issue using a layered 
representation. Firstly, they perform motion segmentation by region clustering under affine 
motion constraints. Layers are then determined by accumulating information about 
different regions from different frames. This information is related to texture, depth and 
occlusion relationships. The main limitations of this model, that make it unpractical in most 
situations, are that it needs a large number of frames to compute layers and significant 
depth variations between layers. 
A very appealing alternative for segmentation is the application of an active model at each 
frame guided by motion features or a combination of motion and static features (Paragios & 
Deriche, 2000). Deformable models are able to impose continuity and smoothness 
constraints while being flexible. 
The performance of any segmentation technique is strongly dependent on the chosen low-
level features to characterize motion. In segmentation using active models, low-level 
features are employed to define the image potential. The simplest approach uses temporal 
derivatives as motion features, as in the work of Paragios and Deriche (2000). They use de 
inter-frame difference to statistically classify image points into static or mobile. Actually, the 
inter-frame difference is not a motion estimation technique, since it only performs motion 
detection without modelling it. It can only distinguish between static and mobile regions. 
Therefore, this method is only valid for static background scenes and can not classify motion 
patterns according to their velocity and direction of motion.  
Most motion segmentation models are based on the estimation of optical flow, i.e., the 2D 
velocity of image points or regions, based on the variation of their intensity values. 
Mansouri and Konrad (2003) have employed optical flow estimation to segmentation with 
an active model. They propose a competition approach based on a level set representation. 
Optimization is based on a maximum posterior probability criterion, leading to an energy 
minimization process, where energy is associated to the overall residuals of mobile objects 
and static background. Residuals are computed as the difference between measured 
intensities and those estimated under the constraint of affine transformation motion model. 
However, optical flow estimations present diverse kinds of problems depending on the 
estimation technique (Barron et al., 1994; Stiller & Konrad, 1999). In general, most optical 
flow estimation techniques assume brightness constancy along frames, which in real 
situations does not always hold, and restrict allowed motions to some specific model, such 
as translational or affine motion. Particularly, differential methods for estimating the 
velocity parameters consistent with the brightness constancy assumption are not very robust 
to noise, aliasing, occlusions and large inter-frame displacements.  
Alternatively, energy filtering based algorithms (Heeger, 1987; Simoncelli & Adelson, 1991; 
Watson & Ahumada, 1985; Adelson & Bergen, 1985; Fleet, 1992) estimate motion from the 
responses of spatio-temporal filter pairs in quadrature, tuned to different scales and 
orientations. Spatio-temporal orientation sensitivity is translated into sensitivity to spatial 
orientation, speed and direction of motion. These techniques are known to be robust to noise 
and aliasing, to give confident measurements of velocity and to allow an easy treatment of 
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the aperture problem, i.e., the reliable estimation of the direction of motion. However, to the 
best of our knowledge there is not motion segmentation method based on energy filtering. 
Another important subject in segmentation with active models is how to initialize the model 
at each frame. A common solution is to use the segmentation of each frame to initialize the 
model at the next frame. Paragios and Deriche (2000) use this approach. The first frame is 
automatically initialized based on the inter-frame difference between the first two frames. 
The main problem of the initialization with the previous segmentation arises with total 
occlusions, when the object disappears from the scene for a number of frames, since no 
initial state is available when the object reappears. The case of large inter-frame 
displacements is also problematic. The object can be very distant from its previous position, 
so that the initial state might not be able converge to the new position. Tsechpenakis et al. 
(2004) solve these problems by initializing each frame, not using the previous segmentation, 
but employing the motion information available for that frame. In that work, motion 
features are only employed for initialization and the image potential depends only on 
spatial information. 

1.2 Our Approach 

In this chapter we present a model for motion segmentation that combines an active model 
with a low-level representation of motion based on energy filtering. The model is based 
solely on the information extracted from the input data without the use of prior knowledge. 
Our low level motion representation is obtained from a multiresolution representation by 
clustering of band-pass versions of the sequence, according to a criterion that links bands 
associated to the same motion pattern. Multiresolution decomposition is accomplished by a 
bank of non-causal spatio-temporal energy filters that are tuned to different scales and 
spatio-temporal orientations. The complex-valued volume generated as the response of a 
spatio-temporal energy filter to a given video sequence is here called a band-pass feature,
subband feature, elementary energy feature or simply energy feature. We will call integral features, 
composite energy features or simply composite features to motion patterns with multiple speed, 
direction and scale contents generated as a combination of elementary energy features in a 
cluster. The set of filters associated to an energy feature cluster are referred to as composite-
feature detector. Segmentation is accomplished using composite features to define the image 
potential and initial state of a geodesic active model (Caselles, 1997) at each frame. The 
composite feature representation will be applied directly, without estimating motion 
parameters.
Composite energy features have proved to be a powerful tool for the representation of 
visually independent spatial patterns in 2D data (Rodriguez-Sánchez et al., 1999), 
volumetric data (Dosil, 2005; Dosil et al., 2005b) and video sequences (Chamorro-Martínez et 
al., 2003). To identify relevant composite features in a sequence, it is necessary to define an 
integration criterion able to relate elementary energy features contributing to the same 
motion pattern. In previous works (Dosil, 2005; Dosil et al., 2005a; Dosil et al., 2005b), we 
have introduced an integration criterion inspired in biological vision that improves the 
computational cost and performance of earlier approaches (Rodriguez-Sánchez et al., 1999; 
Chamorro-Martínez et al., 2003). It is based on the hypothesis of Morrone and Owens (1987) 
that the Human Visual System (HVS) perceives features at points of locally maximal 
Phase Congruence (PC). PC is the measure of the local degree of alignment of the local 
phase of Fourier components of a signal. The sensitivity of the HVS to PC has also been 
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studied by other authors (Fleet, 1992; Oppenheim & Lim, 1981; Ross et al., 1989; du Buf, 
1994). As demonstrated by Venkatesh and Owens  (1990), points whose PC is locally 
maximal coincide with the locations of energy maxima. Our working hypothesis is that local 
energy maxima of an image are associated to locations where a set of multiresolution 
components of the signal contribute constructively with alignment of their local energy 
maxima. Hence, we can identify composite features as groups of features that present a high 
degree of alignment in their energy maxima. For this reason, we employ a measure of the 
correlation between pairs of frequency features as a measure of similarity for cluster 
analysis (Dosil et al., 2005a). 
Here, we extend the concept of PC for spatio-temporal signals to define our criterion for 
spatio-temporal energy feature clustering. We will show that composite features thus 
defined are robust to noise, occlusions and large inter-frame displacements and can be used 
to isolate visually independent motion patterns with different velocity, direction and scale 
content.
The outline of this chapter is as follows. Section 2 is dedicated to the composite feature 
representation model. Section 3 is devoted to the proposed method for segmentation with 
active models. In section 4 we illustrate the behaviour of the model in different problematic 
situations, including some standard video sequences. In 5 we expound some conclusions of 
the work. 

2. Composite-Feature Detector Synthesis 

The method for extraction of composite energy features consists of the decomposition of the 
image in a set of band-pass features and their subsequent grouping according to some 
dissimilarity measure (Dosil, 2005; Dosil et al., 2005a). The set of frequency features involved 
in the process is determined by selecting from a predefined spatio-temporal filter bank those 
bands that are more likely to be associated to relevant motion patterns, which we call active
bands. Composite-feature detectors are clusters of these active filters. Each visual pattern is 
reconstructed as a combination of the responses of the filters in a given cluster. Filter 
grouping is accomplished by applying hierarchical cluster analysis to the set of band-pass 
versions of the video sequence. The dissimilarity measure between pairs of frequency 
features is related to the degree of phase congruence between a pair of features, through the 
quantification of the alignment among their local energy maxima. The following subsections 
detail the process.

2.1 Bank of Spatio-Temporal Filters 

The bank of spatio-temporal filters applied here (Dosil, 2005; Dosil et al., 2005b) uses an 
extension to 3D of the log Gabor function (Field, 1994). The filter is designed in the 
frequency domain, since it has no analytical expression in the spatial domain. Filtering is 
realized as the inner product between the transfer function of the filter and the Fourier 
transform of the sequence. Filtering in the Fourier domain is very fast when using Fast 
Fourier Transform and Inverse Fast Fourier Transform algorithms.  
The filters’ transfer function T is designed in spherical frequency coordinates as the product 
of separable factors R and S in the radial and angular components respectively, such that 
T = R · S .  The radial term R is given by the log Gabor function (Field, 1993) 
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( ) ( )( )
( )( )−= 2
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where σ ρ i  is the standard deviation and ρ i  the central radial frequency of the filter.  
The angular component is designed to achieve orientation selectivity in both the azimuthal 
component φ i  of the filter, which reflects the spatial orientation of the pattern in a frame and 
the direction of movement, and the elevation component θ i , related to the velocity of the 
motion pattern. For static patterns θ i = 0 . To achieve rotational symmetry, S is defined as a 
Gaussian on the angular distance α between the position vector of a given point f in the 
spectral domain and the direction of the filter v =(cosφ i ·cosθ i ,cosφ i ·sinθ i ,sinφ i )  (Faas & 
van Vliet, 2003) 

( ) ( ) ( )22 2exp,;, iii SS ασααθφθφ −== ,   with ( )fvf ⋅= acos),( ii θφα , (2) 

where f is expressed in Cartesian coordinates and σ α i  is the angular standard deviation. 
Active filters are selected from a predefined band partition of the 3D frequency space. 
Frequency bands are determined by the central frequency (ρ i ,φ i ,θ i ) of the filters and their 
width parameters (σ ρ i ,σ α i ). In the predefined bank, frequency is sampled so that  
ρ i ={1/2, 1/4, 1/8, 1/16}  in pixels—1. Parameter σ ρ i  is determined for each band in order to 
obtain 2 octave bandwidth. θ i is sampled uniformly while the number of φ i  samples 
decreases with elevation in order to keep the “density” of filters constant, by maintaining 
equal arc-length between adjacent φ i  samples over the unit radius sphere. Following this 
criterion, the filter bank has been designed using 23 directions, i.e. (φ i ,θ i ) pairs, yielding 92 
bands. σ α i  is set to 25º for all orientations. Hence, the bank involves 4×23 filters that yield a 
redundant decomposition and cover a wide range of the spectrum.  

2.2 Selection of Active Bands 

To achieve improved performance, it is convenient to reduce the number of bands involved 
in cluster analysis. The exclusion of frequency channels that are not likely to contribute to 
motion patterns facilitates the identification of clusters associated to composite motion 
features. Furthermore, it reduces computational cost. Here, we have introduced a channel 
selection stage based on a statistical analysis of the amplitude responses of the band-pass 
features. Selected channels are called active.
Our method for the selection of active channels is based on the works of Field (1994) and 
Nestares et al. (2004). Field has studied the statistics of the responses of a multiresolution 
log-Gabor wavelet representation scheme that resembles the coding in the visual system of 
mammalians. He has observed that the filter responses histograms are not Gaussian, but 
leptokurtic distributions –pointed distributions with long tails–, revealing the sparse nature 
of both the sensory coding and the features from natural images. According to Field, when 
the parameters of the wavelet codification fit those in the mammalian visual system, the 
histogram of the responses is highly leptokurtic. This is reflected in the fourth cumulant of 
the distribution. Namely, he uses the kurtosis to characterize the sparseness of the response.  
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Regarding spatio-temporal analysis, Nestares et al. (2000) applied channel selection to a 
bank of spatio-temporal filters, with third order Gaussian derivatives as basis functions, 
based on the statistics of filters responses. They have observed that features corresponding 
to mobile targets present sparser responses than those associated to background –weather 
static or moving. This fact is illustrated in Fig. 1. They measure different statistical 
magnitudes reflecting sparseness of the amplitude response, realize a ranking of the 
channels based on such measures and perform channel selection by taking the n first 
channels in the ranking, where n is a prefixed number. 
Based on these two works, we have designed our filter selection method. The statistical 
measure employed to characterize each channel is the kurtosis excess γ2

32
242 −= kkγ  (3) 

where k4 and k2 are respectively the fourth and second cumulants of a histogram. If the 
kurtosis excess takes a positive value, the distribution is called leptokurtic and presents a 

(a)

    
(b)                                                                (c) 

    
(d)                                                                (e) 

Fig. 1. (a) A frame of the standard sequence Silent, showing a moving hand. (b) and (d) A 
frame of the real component of two band-pass features of the Silent video sequence. (c) and 
(e) Histograms corresponding to band-pass features in (b) and (d) 
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narrow peak and long tails. If it is negative, the distribution is called platykurtic and 
presents a broad central lobe and short tails. Distributions with zero kurtosis excess, like the 
Gaussian distribution, are called mesokurtic.  
We measure 2 for both the real and imaginary components of each feature ψ i  and then 
compose a single measure δ

( )( ) ( )( )iii ψγψγδ ImRe 22 +=  (4) 

Instead of selecting the n first channels in the ranking of δ, we perform cluster analysis to 
identify two clusters, one for active channels with large values of δ and another for non 
active channels. Here, we have applied a k-means algorithm. The cluster of active channels 
is identified as the one with larger average δ.

2.3 Energy Feature Clustering 

Integration of elementary features is tackled in a global fashion, not locally (point-wise). 
Besides computational efficiency, this provides robustness, since it intrinsically correlates 
same-pattern locations –in space and time–, avoiding grouping of disconnected regions.  
As aforementioned, it seems plausible that the visual system of humans perceives features 
where Fourier components are locally in phase (Morrone & Owens, 1987). Our criterion for 
integration of frequency features is based on the assumption that a maximum in phase 
congruence implies the presence of maxima in the same location in a subset of subband 
versions of the data. Points of locally maximal phase congruence are also points of locally 
maximal energy density (Venkatesh & Owens, 1990). Hence, subband images contributing 

   

   

(a) (b) (c) 

Fig. 2. (a) A frame of a synthetic video sequence, where two light spots move from side to 
side with opposite direction. (b) A cut along the temporal axis of the total energy of the 
sequence. (c) Energy of some band-pass versions of the sequence. Those on top row 
correspond to one of the spots and present some degree of concurrence on their local 
energy maxima. Bottom row shows two band-pass features correspondent to the other 
motion pattern. 
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to the same visual pattern should present a large degree of alignment in their local energy 
maxima, i.e., their energy maxima present some degree of concurrence –see Fig. 2.  
Here, the dissimilarity between two subband features is determined by estimating the 
degree of alignment between the local maxima of their local energy. Alignment is quantified 
using the correlation coefficient ρ of the energy maps of each pair {ψ i , ψ j } of subband 
features. This measure has proved to produce good results in visual pattern extraction from 
volumetric data (Dosil, 2005; Dosil et al., 2005b). If A(ψ )=||ψ||=(Im(ψ ) 2 +Re(ψ ) 2 ) 1 / 2 , the 
actual distance is calculated from ρ(A i ,A j )  as follows 

( )( )22),(11),( jiji AAAAD ρρ +−= . (5) 

This distance function takes values in the range [0,1]. The minimum value corresponds to 
perfect match of maxima –linear dependence with positive slope– and the maximum 
corresponds to the case of perfect fit with negative slope, like, for example, an image and its 
inverse. This measure does not depend on the selection of any parameter and does not 
involve the discrete estimation of joint and/or marginal probabilities –histograms. 
Our approach generates visual patterns by clustering of active bands. Dissimilarities 
between each pair of frequency features are computed to build a dissimilarity matrix. To 
determine the clusters from the dissimilarity matrix, a hierarchical clustering method has 
been chosen, using a Ward’s algorithm to determine inter-cluster distance, which has 
proved to improve other metrics (Jain & Dubes, 1988). The number of clusters Nc that a 
hierarchical technique generates is an input parameter of the algorithm. The usual strategy 
to determine the Nc is to run the algorithm for each possible Nc and evaluate the quality of 
each resulting configuration according to a given validity index. A modification of the 
Davies-Boulding index proposed by Pal and Biswas (1996) has proved to produce good 
results for our application. It is a graph-theory based index that measures the compactness 
of the clusters in relation to their separation.  
A stage of cluster merging follows cluster analysis. Clusters with average intercluster 
correlation values close to one –specifically, greater than 0.75– are merged to form a single 
cluster. This is made since we can not evaluate the quality of a single cluster containing all 
features. Besides, hierarchical algorithms can only analyse the magnitude of a distance in 
relation to others, not in an absolute fashion. This fact is often a cause of wrong 
classification, splitting clusters into smaller subgroups.  

2.4 Composite Feature Reconstruction 

The response ψ to an energy filter is a complex-valued sequence, where the real and 
imaginary components account for even and odd symmetric features respectively. In this 
section we describe how elementary complex features in a cluster are combined to obtain a 
composite-feature Ψ. We will use real, imaginary or amplitude representations depending 
on the application. For simple visualization we will employ only the real components. In the 
definition of the image potential of an active model, we are only interested on odd-
symmetric components, which represent mobile contours, so only the imaginary parts of the 
elementary features will be involved. For initialization we are interested in the regions 
occupied by the moving objects, so the amplitude of the responses ||ψ|| is the chosen 
representation.
Here we define the general rule for the reconstruction of Ψ based on a given representation 
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E of the responses of the filters, that can be either Re(ψ ), Im(ψ ) or the amplitude 
A(ψ )=||ψ||=(Im(ψ ) 2 +Re(ψ ) 2 ) 1 / 2 . The easiest way of constructing the response Ψ of a set 
Ω j  of filters in a cluster j is by linear summation 

( ) ( )
Ω∈

=Ψ
ji

i
j tyxEtyx ,,,, . (6) 

However, simple summation presents one important problem. There might be features in 
the cluster that contribute, not only to the corresponding motion pattern, but also to other 
patterns or static structures in the sequence. Only points with contributions from all features 
in the cluster should have a non null response to the composite feature detector. To avoid 
this problem, we define the composite feature as the linear summation of elementary 
features weighted by a mask indicating locations with contribution of all features in the 
clustering. The mask is constructed as the summation of the thresholded responses iE~  of the 
elementary features, normalized by the total number of features. Thresholding is 
accomplished by applying a sigmoid to the responses of elementary features, so that 

]1,0[~ ∈iE . Therefore, the mask takes value 1 wherever all features contribute to the 
composite pattern and rapidly decreases otherwise, with a smooth transition  

( ) ( ) Ω∈

Ω∈

Ω
=Ψ

j

j

i
i

j

i
i

j E
Card

E

tyx

~

,, , (7) 

where Ωj is the set of all bands in cluster j. The effect of masking is illustrated in Fig. 3. 
Reconstruction using different representations for E is illustrated in Fig. 4. 
For visualization purposes, we will employ the real component ( ))Re( ii

jj
even E ψ=Ψ=Ψ . The 

odd-symmetric representation of Ψ is constructed by full-wave rectification of expression in 
equation (7), so that ( ))Im( ii

jj
odd E ψ=Ψ=Ψ  does not have into account the sign of the 

contour. The amplitude representation ( )ii
jj

amp E ψ=Ψ=Ψ  is used for initialization in 
general situations. The even-symmetric representation is used for initialization of objects 
with uniform contrast and is defined by applying a half-wave rectification )0,max( j

evenΨ± ,
with sign depending on the specific contrast.  

Fig. 3. A frame of the “silent” video sequence: Left: Input data. Centre: Even-symmetric 
representation of the response of one of the composite features detected, corresponding to 
the moving hand, calculated using equation (6) and, Right: using equation (7) 
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3. Motion Pattern Segmentation 

The previously described method for feature clustering is able to isolate different static and 
dynamic patterns from a video sequence. Nevertheless, it is not suitable by itself to segment 
mobile objects for several reasons. To begin with, the mobile contours might present low 
contrast in some regions, giving place to disconnected contours. Furthermore, when the 
moving object is occluded by static objects, its contour presents static parts, so that the 
representation with motion patterns is incomplete. This happens also when a contour is 
oriented in the direction of motion; only the motion of the beginning and end of the segment 
is detected. For these reasons, we will produce a higher-level representation of the motion 
patterns from the proposed low-level motion representation.  
In this work we have chosen an active model as a high level representation technique, 
namely, the geodesic active model. We will perform a segmentation process for each 
composite feature, which we will refer to as Ψ, omitting the superindex. From that pattern, 
we derive the initial state of the model and the image potential in each frame. After evolving 
a geodesic model in each frame, the segmented sequence is generated by stacking the 
segmented frames. A scheme of the segmentation method is presented in Fig. 5. Next 
subsections describe the technique in depth.  

3.1 Geodesic Active Model 

To accomplish segmentation, here we have chosen an implicit representation for object 
boundaries, where the contour is defined as the zero level set of an implicit function. 
Implicit active models present important advantages regarding parametric representations. 
The problem of contour re-sampling when stretching, shrinking, merging and splitting is 
avoided. They allow for the simultaneous detection of inner and outer contours of an object 
and naturally manage topological changes. Inner and outer regions are determined by the 
sign of the implicit function.  

            

           
Fig. 4. Top left: One frame of an example sequence with a moving dark cylinder. The 
remainder images show different representations for one of the composite features 
identified by the presented representation method. Top right: Even representation. Bottom 
left: Odd representation. Bottom right: Amplitude representation. 
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The optimization model employed for segmentation is the geodesic active model (Caselles et 
al., 1997). The evolution of the contour is determined from the evolution of the zero-level set 
of an implicit function representing the distance u to the contour. Let Ω : = [ 0 , a x ] × [ 0 , a y ]
be the frame domain and consider a scalar image u 0 ( x , y )  on Ω. We employ here symbol τ
for time in the evolution equations of u to distinguish it from the frame index t. Then, the 
equations governing the evolution of the implicit function are the following: 

( )
( ) ( ) ( ) )(0,on

on),,(0,,, 0

∞×Ω
Ω

∇∇++∇=
∂
∂

====

usgcusgu
ttyxuttyxu kk

κ
τ

τ
, (8) 

Fig. 5. Scheme of the segmentation technique 
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where c is real constant, g is a function with values in the interval [0, 1] that decreases in the 
presence of relevant image features, s is the selected image feature and κ is the curvature.  
If the second term in the right side of the previous equation is not considered, what remains 
is the expression for the geometric active model, where g · ( κ + c )  represents the velocity of the 
evolving contour. The role of the curvature can be interpreted as a geometry dependent 
velocity. Its effect is also equivalent to the internal forces in a thin-plate-membrane spline 
model, also called snake (Kass et al., 1988). Constant c represents a constant velocity or 
advection velocity in the geometric active model and is equivalent to a balloon force in the 
snake model. Factor g(s) has the effect of stopping the contour at the desired feature 
locations. The second term in the right side is the image dependent term, which pushes the 
level-set towards image features. It is analogous to external forces in the snake formulation. 
This term did not appear in the geometric active model, which made necessary the use of a 
constant velocity term to approach the level-set to the object boundary. With the use of a 
feature attraction term this is no longer necessary. However, if the model is initialized far 
away from the image features to be segmented, the attraction term may not have enough 
influence over the level-set. As a result, the constant velocity term is often used to 
compensate for the lack of an initialization stage. 
The concrete implementation of the geodesic active model used here is the one described in 
(Weickert & Kühne, 2003). We do not employ balloon forces, since with the initialization, 
described in subsection 3.3, they are no longer needed, so then c = 0. In the following 
subsection we define the image potential as a function of the composite energy features.  

3.2 Image Potential Definition 

The expression for the image potential function is the same as in (Weickert & Kühne, 2003) 

( ) ( )pss
sg

min1
1

+
= , (9) 

with p and smin being real constants.  
The potential of the mobile contour depends on the odd-symmetric representation of the 
motion pattern, Ψodd, reconstructed as the rectified sum of the imaginary components of the 
responses to its constituent filters. This motion pattern may present artefacts, due to the 
diffusion of patterns from neighbouring frames produced when applying energy filtering. 
This situation is illustrated in Fig. 6.a and b. To minimize the influence of these artefacts, the 
motion pattern is modulated by a factor representing the localization of spatial contours. It 
is calculated from the 2D contour detector response by thresholding using a sigmoid 
function

( ) ( )( )
( )

( )( )kodd

kodd

ks
km tyx

tyx
CtyxCK

tyxC
,,max

,,
),,(exp1

1,,
0 Ψ

Ψ
−−+

= , (10) 

where Cs is a spatial contour detector based on the frame gradient, C0 is the gradient 
threshold and K is a positive real constant. The specific values taken here are C 0 = 0 . 1  and 
K = 2 0 . The effect of this modulation can be observed in Fig. 6.c and d.  
Although here we are interested in segmenting objects based on their motion features, it is 
convenient to include a spatial term in the potential. This is necessary to close the contour 
when part of the boundary of the moving object remains static –when there is a partial 
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occlusion by a static object or scene boundary or when part of the moving contour is parallel 
to the direction of motion. Therefore, the image feature s is the weighted sum of two terms, 
Cm and Cs, respectively related to spatio-temporal and pure spatial information.  

mmss CwCws += , with 1=+ ms ww  and 0, >ms ww  (11) 

The weight of the spatial term ws must be much smaller than the motion term weight wm, so 
that the active model does not get “hooked“ on a static contours not belonging to the target 
object. Here, the values of the weights have been set as follows: w s = 0 . 1 and w m = 0.9. 
The spatial feature employed to define the spatial potential is the regularized image 
gradient. Regularization of a frame is accomplished here by feature-preserving 2D 
anisotropic diffusion, which brakes diffusion in the presence of contours and corners. The 
3D version of the filter is described in (Dosil & Pardo, 2003). If I * ( x , y , t k )  is the smoothed 
version of the kth frame, then 

( ) ( )),,(max),,(,, **
kkks tyxItyxItyxC ∇∇=  (12) 

In the potential function g , p = 2  and s min is calculated so that, on average, g ( s ( x , y ) ) = 0.01, 
∀ x , y : C m ( x , y ) > 0.1. Considering the geodesic active model in a front propagation 
framework, g = 0.01 means a sufficiently slow speed of the propagating front to produce 
stopping in practical situations. 

3.3 Initialization 

The initial state of the geodesic active model is defined, in a general situation, from the 
amplitude representation of the selected motion pattern Ψamp unless other solution is 
specified. To enhance the response of the cluster we apply a sigmoid thresholding to Ψamp.
The result is remapped to the interval [–1,1]. The zero-level of the resulting image is the 
initial state of the contour. 

( ) ( )( ) 1
),,(exp1

2,,
0

0 −
Ψ−Ψ−+

=
kamp

k tyxK
tyxu  (13) 

When the object remains static during a number of frames the visual pattern has a null 
response. For this reason, the initial model is defined as the weighted sum of two terms, 
respectively associated to the current and previous frames. The contribution from the 
previous frame must be very small.  

( ) ( )( ) ( )11
0

0 ,,1
),,(exp1

2,,
max −=−+−

Ψ−Ψ−+
= kk

kamp
kk tyxuw

tyxK
wtyxu ττ  (14) 

with w k and w k – 1 being positive real constants that verify w k + w k – 1 = 1. In the experiments 
presented in next section, w k = 0.9, w k – 1 = 0.1, K = 20 and Ψ 0 = 0.1. 

4   Results 

In this section, some results are presented to show the behaviour of the method in 
problematic situations. The results are compared to an alternative implementation that 
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employs typical solutions for initialization and definition of image potential in a way similar 
to that of Paragios and Deriche (2000): the initial state is the segmentation of the previous 
frame and the image potential depends on the inter-frame difference. However, instead of 
defining the image potential from the temporal derivative using a Bayesian classification, 
the image potential is the same as with our method, except that the odd-symmetric 
representation of the motion pattern is replaced by the inter-frame difference 
I t (x ,y , t k )= I (x ,y , t k )–I (x ,y , t k – 1 ) . This is to compare the performance of our low-level 
features with inter-frame difference under the equal conditions. The initial state for the first  
frame is defined by user interaction.
The complete video sequences with the original data and the segmentation results are 
available at http://www-gva.dec.usc.es/~rdosil/motion_segmentation_examples.htm.They 
are summarized in the next subsections.  

4.1   Moving Background 

In this example, we use part –27 frames– of the well-known sequence “flower garden”. It is 
a static scene recorded by a moving camera –see Fig. 7. The estimation of the inter-frame 
difference along frames produces large values at every image contour. The temporal 
derivative can be thresholded, or more sophisticated techniques for classifying regions into 
mobile or static can be employed, as in (Paragios & Deriche, 2000). However, it is not 
possible to isolate independent motion patterns just from the information brought by It. In 
contrast, visual pattern decomposition allows isolation of motion patterns with different 
speeds, which in the 3D spatio-temporal domain is translated into patterns with different 
orientations. This is made clear visualizing a cut of the image and the motion patterns in the 
x-t plane, as in Fig. 8.  
Consequently, the image potential estimated from the temporal derivative feature presents 

            
(a)                                                (b) 

           
(c)                                                 (d) 

Fig. 6. (a) One frame of an example sequence where the dark cylinder is moving from left to 
right. For one of the composite features detected: (b) Ψodd representation. (c) Gradient after 
sigmoid thresholding. (d) Motion feature Cm from equation (10) as the product of images 
(b) and (c). 



Energy Feature Integration for Motion Segmentation 15

deep minima all over the image and the active model is not able to distinguish foreground 
objects from background, as can be seen in Fig. 9. The image potential in our 
implementation considers only the motion pattern corresponding to the foreground object, 
leading to a correct segmentation, as shown in Fig. 5.

4.2   Large Inter-Frame Displacements 

When the sampling rate is too small in relation to the speed of the moving object, it is 
difficult to find the correspondence between the positions of the object in two consecutive 
frames. Most optical flow estimation techniques present strong limitations in the allowed 
displacements. Differential methods, based on the brightness constancy assumption, try to 
find the position of a pixel in the next frame imposing some motion model. Frequently, the 
search is restricted to a small neighborhood. This limitation can be overcome by coarse-to-
fine analysis or by imposing smoothness constraints (Barron et al., 1994). Still, large 
displacements are usually problematic. The Kalman filter is not robust to abrupt changes 
when no template is available (Boykov & Hutterlocher, 2000).  
When using the inter-frame difference in combination with an active model, the 
correspondence is accomplished through the evolution of the model from the previous state 
to the next one (Paragios & Deriche, 2000). However, when initializing with the previous 
segmentation, the model is not able to track the target if the previous segmentation does not 
intersect the object in the following frame. Fig. 10 shows an example case of this situation, 
taken from the standard sequence “table tennis”. The alternative implementation of the 
active model fails to track the ball, as shown in the images of the second row of the figure. 
When using energy features, the composite motion patterns are isolated from each other. In 
this way, the correspondence of the motion estimations in different frames is naturally 
provided by the representation scheme, as shown in the third row of Fig. 10. This is also a 
property of techniques for motion estimation based on the Hough transform (Sato & 
Aggarwal, 2004). Nevertheless, this approach in not appropriate for this sequence, since the 
speed of the moving objects is variable in magnitude and direction –it is an oscillating 
movement –, so that it does not describe a straight line or a plane in the spatio-temporal 
domain –see left image in Fig. 10. Unlike the Hough transform, composite features combine 
elementary velocity-tuned features to deal with complex motion patterns, as can be seen in 
the image at the right of Fig. 10. We take advantage of both the isolation of the motion 
pattern and the integration of different velocity components associated to the moving 
objects, to initialize the model at each frame. Hence, the model arrives to a correct 
segmentation of the ball –see Fig. 10, bottom row– besides the large displacement produced 
and the changing direction or movement. 

4.3 Total Occlusions 

Occlusions give rise to the same problem as with fast objects. Again, initialization with 
composite frequency-features leads to a correct segmentation even when the object 
disappears from the scene during several frames. An example of this is presented in Fig. 12. 
In segmentation based on region classification (Chang et al., 1997; Montoliu & Pla, 2005) the 
statistical models extracted for each of the identified regions could be employed for tracking 
by finding the correspondence among them in different frames. However, occlusions carry 
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 the additional problem of determining when the object has left the scene and when it 
reappears. The same problem applies for Kalman filter segmentation. Returning to the 
alternative implementation of the active model, when the object leaves the scene and no 

other motion features are detected, the model collapses and the contour disappears from the 
scene in the remainder frames –see Fig. 12, second row. The solution of Paragios and 
Deriche could be employed to reinitialize the model by applying motion detection again, 
but it can not be ensured that the newly detected motion feature corresponds to the same 
pattern.
Again, due to the nature of our representation, the composite energy-features do not need a 
stage for finding correspondence between regions occupied by a motion pattern in different 
frames –see Fig. 12, third row. The model collapses when the cylinder disappears behind a 
static object and is reinitialized automatically when it reappears, without the need of a prior 
model. Initialization for this particular example has been achieved by using max(–Ψeven, 0) of 
the selected composite feature, instead of the amplitude representation. This is because the 
target object does not present severe contrast changes in its surface, so half-wave 
rectification of the even-symmetric representation allows better localization of the object, 
facilitating convergence –the real component are inverted before rectification, since the 
object has negative contrast.  

Fig. 7. A frame of the “flower garden” video sequence. 

Fig. 8. A transversal cut of the original sequence: Left: Input data. Centre and Right: Ψamp of 
the two motion patterns isolated by the composite-feature representation model 

Fig. 9. For the frame in Fig. 7, Left: Inter-frame difference, Centre: Image potential derived 
from It, Right: Segmentation obtained using image potential from image at the centre and 
initialization with the segmentation from previous frame. 
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Fig. 10. Top: Two consecutive frames of the “table tennis” video sequence. For frames on top 
row, 2nd Row: Segmentations produced by the alternative active model, 3rd Row: Ψamp of the 
selected composite-feature, Bottom: Segmentation obtained with one of the detected 
composite-features 

Fig. 13 shows another example presenting occlusions where the occluding object is also 
mobile. As can be seen, the alterative active model fails in segmenting both motion patterns, 
both due to initialization with previous segmentation and incapability of distinguishing 
both motion patterns, while our model properly segments both patterns using the 
composite-features provided by our representation scheme. 

4.4   Complex Motion Patterns  

The following example shows the ability of the method to deal with complex motion 
patterns and complex scenarios. In particular, the following sequence, a fragment of the 
standard movie know as “silent”, presents different moving parts, each one with variable 
speed and direction and deformations as well, over a textured static background. As can be 
seen in the images from the top row of Fig. 14, the motion pattern of the hand can not be 
properly described by an affine transformation. Moreover, the brightness constancy 
assumption is not verified here.  

    .
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Fig. 11. Left: A cut of the “table tennis” sequence in the x-t plane. The white pattern 
corresponds to the ball and the gray/black sinusoidal pattern bellow corresponds to the bat. 
Right: A cut of the in the x-t plane of the Ψamp representation of the composite feature used 
in segmentation in bottom row of Fig. 14.

The active model based on the inter-frame difference is not able to properly converge to the 
contour of the hand, as seen in second row of Fig. 14. This is due to both the interference of 
other moving parts or shadows and wrong initialization. From the results, it can be seen 
that, despite the complexity of the image, the composite-feature representation model is able 
to isolate the hand and properly represent its changing shape in different frames – Fig. 14.

4.5   Discussion 

In the examples presented, it can be observed that the proposed model for the 
representation of motion is able to group band-pass features associated to visually 
independent motion patterns without the use of prior knowledge. It must be said that the 
multiresolution scheme defined in section 2.1 has a great influence in the results, specially 
the selection of the number of filters and the angular bandwidth, which is related to the 
ability of the model to discriminate between different but proximal orientations, speeds and 
directions of motion.  
In the comparison with the alternative implementation, which uses typical solutions for 
initialization and image potential definition, the proposed approach outperforms. Although 
there are other approaches that may present improved performance in solving some of the 
reported problems, it seems that none of them can successfully deal with all of them.
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Fig. 12.  Top: Three frames of a video sequence where a moving object is totally occluded 
during several frames. 2nd Row: Segmentation using initialization with previous 
segmentation. 3rd Row: Initialization of the frames using the Ψamp representation of one of the 
detected composite-feature. Bottom: Segmentation using initialization with the composite 
feature

The key characteristic of composite-feature representation scheme is that integration is 
accomplished by clustering on frequency bands, not by point-wise region clustering. This 
fact yields a representation that intrinsically correlates information from different frames, in 
a way similar to techniques based on the Hough transform –but not limited to constant 
speed and direction. This property is responsible for the robustness to partial and total 
occlusions and large inter-frame displacements or deformations. Furthermore, the proposed 
representation scheme does not limit the possible motion patterns to predefined models, like 
translational or affine motion, thanks to the composition of elementary motion features. This 
is evident in example from section 4.4 –“silent” video sequence– where also local deformations 
of the target appear. Besides, energy filtering provides robustness to noise and aliasing.  
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On the other hand, composite features present a larger temporal-diffusion effect than, for 
example, the inter-frame difference. However, this effect is suitably corrected by the 
gradient masking. Naturally, other typical shortcomings associated to velocity tuned filters 
can appear. For instance, there may be problems with low contrast regions, since the 
representation model is related to the contrast of features. This is observed in the example of 

section 4.1, where the contour between tree and flower bed is poorly defined –see Fig. 5.

Fig. 13. Three frames of a sequence showing two occluding motion patterns. 1st row:  Input 
data. 2nd and 3rd rows: Inter-frame difference based segmentation, using a different 
initialization for each of the motion patterns. 4th and 5th rows: Ψeven of two of the obtained 
composite-features, corresponding to the two motion patters. 6th and 7th rows: 
Segmentations produced using composite-features from rows 4th and 5th respectively.  
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5. Conclusions 

In this chapter, a new active model for the segmentation of motion patterns from video 
sequences has been presented. It employs a motion representation based on composite 
energy features. It consists on the clustering of elementary band-pass features, which can be 
considered velocity tuned features. Integration is accomplished by extending the notion of 
phase congruence to spatio-temporal signals. The active model uses this motion information 
both for image potential definition and initialization of the model in each frame of the 
sequence.  

       

                                       

   
Fig. 14. Two frames of the “silent” video sequence: Top Row: Input data. 2nd Row: 
Segmentation using the active model based on the inter-frame difference. 3rd Row: Ψeven of 
the selected motion pattern. Bottom Row: Segmentation using the active model based on the 
composite-feature 
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The motion representation has proved to be able to isolate independent motion patterns 
from a video sequence. The integration criterion of spatio-temporal phase congruence gives 
place to a decomposition of the sequence into visually relevant motion patterns without the 
use of a priori knowledge.  
The combination of geodesic active models and our motion representation yields a motion 
segmentation tool that presents good performance in many of the typical problematic 
situations, where previous approaches fail to properly segment and track, such as presence 
of noise and aliasing, partial and total occlusions, large inter-frame displacements or 
deformations, moving background and complex motion patterns. In the comparison with an 
alternative implementation, that employs typical solutions for initialization and definition of 
image potential, our method shows enhanced behavior.  
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1. Introduction 

Computer vision is an area of the computer science which aims to make computers to have 
some functions owned by human vision system. During the research on computer vision, 
we often think about "how human see". Obviously, when a human observer views a scene, 
the observer sees not the whole complex scene, but rather a collection of objects. A common 
experience of segmentation is the way that an image can resolve itself into a figure, typically 
the significant, important object, and a ground, the background on which the figure lies. 
The capability of human beings to segment the complex scene into separated objects is so 
efficient that we regard it as a mystery. At meantime, it appeals the researchers of computer 
vision who want to let computer have the same capability. So the task, Image Segmentation, 
is presented. 
The chapter describes new achievements in the area of multimodal range and intensity 
image unsupervised segmentation. This chapter is organized as follows. Range sensors are 
described in section 2 followed by the current state of art survey in section 3. Sections 4 to 6 
describe our fast range image segmentation method for scenes comprising general faced 
objects. This range segmentation method is based on a recursive adaptive probabilistic   
detection of step discontinuities (sections 4 and 5) which are present at object face borders    
in mutually registered range and intensity data. Detected face outlines guides the 
subsequent region growing step in section 6 where the neighbouring face curves are 
grouped together. Region growing based on curve segments instead of pixels like in the 
classical approaches considerably speed up the algorithm. The exploitation of multimodal 
data significantly improves the segmentation quality. The evaluation methodology a range 
segmentation benchmarks are described in section 7.  Following sections show our 
experimental results of the proposed model (section 8), discuss its properties and conclude 
(section 9) the chapter. 

1.1 Image Segmentation

There is no single standard approach to segmentation. The definition of the goal of 
segmentation varies according to the type of the data and the application type. Different 
assumptions about the nature of the images being analyzed lead to use of different 
algorithms. One possible image segmentation definition is: "Image Segmentation is a 
process of partitioning the image into non-intersecting regions such that each region is 
homogeneous and the union of no two adjacent regions is homogeneous" (Pal & Pal, 1993). 
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The segmentation process is perhaps the most important step in image analysis since its 
performance directly affects the performance of the subsequent processing steps in image 
analysis and it significantly determines the resulting image interpretation. Despite its 
utmost importance, segmentation still remains as an unsolved problem in the general sense 
as it lacks a general mathematical theory. The two main difficulties of the segmentation 
problem are its underconstrained nature and the lack of definition of the "correct" 
segmentation. Perhaps as a consequence of these shortcomings, a plethora of segmentation 
algorithms has been proposed in the literature. These algorithms range from simple ad hoc 
schemes to more sophisticated ones using object and image models. 
The area of segmentation algorithms typically suffers with the lack of benchmarking results 
and methodologies. With few rare exceptions in specific narrow applications single 
segmentation algorithm cannot be ranked and potential user has to experimentally validate 
several segmentation algorithms for his particular application. 

1.2 Range Image Segmentation 

Range images store, instead of brightness or colour information, the depth at which the ray 
associated with each pixel first intersects the object observed by a camera. In a sense, a range 
image is exactly the desired output of stereo, motion, or other shape-from vision modules. It 
provides geometric information about the object independent of the position, direction, and 
intensity of light sources illuminating the scene, or of the reflectance properties of that 
object.
Range image segmentation has been an instrument of computer vision research for nearly 30 
years. Over that period several partial results have found its way into many industrial 
applications such as geometric inspection, reverse engineering or autonomous navigation 
systems. However similarly as in the spectral image segmentation area the range image 
segmentation problem is still far from being satisfactory solved. 

2. Range Sensors 

Range sensors can be grouped into the passive and active once. A rich variety of passive 
stereo vision techniques produce three-dimensional information. Stereo vision involves two 
processes: the binocular fusion of features observed by the two cameras and the 
reconstruction of their three dimensional preimage. An alternative to classical stereo is the 
photometric stereo (Horn, 1986). Photometric stereo is a monocular 3-D shape recovery 
method assuming single illumination point at infinity, Lambertian opaque surface and 
known camera parameters, that relies on a few images (minimally 3) of the same scene taken 
under different lighting conditions. If this before mentioned knowledge is not available, i.e., 
uncalibrated stereo, more intensity images are necessary. There are usually two processing 
steps: First, the direction of the normal to the surface is estimated at each visible point. The 
set of normal directions, also known as the needle diagram, is then used to determine the 3-
D surface itself. At the limit, shape from shading requires a single image, but then solving 
for the normal direction or 3-D location of any point requires integration of data from all 
over the image. 
Active sensing techniques promise to simplify many tasks and problems in machine vision. 
Active range sensing operates by illuminating a portion of the surface under controlled 
conditions and extracting a quantity from the reflected light (angle of return in 
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triangulation, time/phase/frequency delay in time of flight sensors) in order to determine 
the position of the illuminated surface area. This position is normally expressed in the form 
of a single 3-D point.  
An active range sensor - a range camera - is a device which can acquire a raster (two-
dimensional grid, or image) of depth measurements, as measured from a plane 
(orthographic) or single point (perspective) on the camera (Forsyth & Ponce, 2003). In an 
intensity image, the greyscale or colour of imaged points is recorded, but the depths of the 
points imaged are ambiguous. In a range image, the distances to points imaged are recorded 
over a quantized range. For display purposes, the distances are often coded in greyscale, 
usually that the darker a pixel is, the closer it is to the camera. 

Intensity Image    Range Image 

   
Fig. 1. Example of registered intensity and range image 

2.1. Triangulation Based (Structured Light) Range Sensors 

Triangulation based range finders date back to the early seventies. They function along the 
same principles as passive stereo vision systems, one of the cameras being replaced by a 
source of controlled illumination (structured light). For example, a laser and a pair of 
rotating mirrors may be used to sequentially scan a surface. In this case, as in conventional 
stereo, the position of the bright spot where the laser beam strikes the surface of interest is 
found as the intersection of the beam with the projection ray joining the spot to its image. 
Contrary to the stereo case, however, the laser spot can normally be identified without 
difficulty since it is in general much brighter than the other scene points (in particular when 
a filter tuned to the laser wavelength is inserted in front of the camera), altogether avoiding 
the correspondence problem. 
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Fig. 2. Optical triangulation using laser beam for illumination. 

Alternatively, the laser beam can be transformed by a cylindrical lens into a plane of light 
(Fig. 2.). This simplifies the mechanical design of the range finder since it only requires one 
rotating mirror. More importantly, perhaps, it shortens the time required to acquire a range 
image since a laser stripe, the equivalent of a whole image column, can be acquired at each 
frame.
A structured light scanner uses two optical paths, one for a CCD sensor and one for some 
form of projected light, and computes depth via triangulation. ABW GmbH and K2T Inc. are 
two companies which produce commercially available structured light scanners. Both of 
these cameras use multiple images of striped light patterns to determine depth. two 
example structured light patterns used by the K2T GRF-2 range camera are shown in Fig. 3. 

      
Fig. 3. Example images of two of the eight structured light patterns used by the K2T GRF-2 
range camera. 
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Variants of these techniques include using multiple cameras to improve measurement 
accuracy and exploiting (possibly time coded) two dimensional light patterns to improve 
data acquisition speed. The main drawbacks of the active triangulation technology are 
relatively low acquisition speed and missing data at parts of the scene visible to the CCD  
sensor and not visible to the light projector. The resulting pixels in the range image, called 
shadow pixels, do not contain valid range measurements. Next difficulties arise from 
missing or erroneous data due to specularities. It is actually common to all active ranging 
techniques: a purely specular surface will not reflect any light in the direction of the camera 
unless it happens to lie in the corresponding mirror direction. Worse, the reflected beam 
may induce secondary reflections giving false depth measurements. 

2.2. Time of Flight Range Sensors

The second main approach to active ranging involves a signal transmitter, a receiver, and 
electronics for measuring the time of flight of the signal during its round trip from the range 
sensor to the surface of interest (Dubrawski & Sawwa, 1996). This is the principle used in the 
ultrasound domain by the Polaroid range finder, commonly used in autofocus cameras from 
that brand and in mobile robots, despite the fact that the ultrasound wavelength band is 
particularly susceptible to false targets due to specular reflections. Time of flight laser range 
finders are normally equipped with a scanning mechanism, and the transmitter and receiver 
are often coaxial, eliminating the problem of missing data common in triangulation 
approaches. There are three main classes of time of flight laser range sensors: 

• pulse time delay RS 
Pulse time delay sensor emits very brief, very intense pulses of light. The amount of 
time the pulse takes to reach the target and return is measured and converted to a 
distance measurement. The accuracy of these sensors is typically limited by the 
accuracy with which the time interval can be measured, and the rise time of the laser 
pulse.

• AM phase-shift RS 
AM phase-shift range finders measure the phase difference between the beam emitted 
by an amplitude-modulated laser and the reflected beam (see Fig. 4.), a quantity 
proportional to the time of flight. 

Fig. 4. Illustration of AM phase-shift range sensor measurement. 

Measured distance r can be expressed as: 

π
λϕ
4

mr ∗Δ= (1)
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where Δϕ is the phase difference between emitted and reflected beam and λm is the 
wave-length of modulated function. Due to periodical nature of modulated function the 
measurement is possible only in an ambiguity interval ra=λm/2.

• FM beat RS 
FM beat sensors measure the frequency shift (or beat frequency) between a frequency-
modulated laser beam and its reflection (see Fig. 5.), another quantity proportional to 
the round trip flight time. 

 Fig. 5. Illustration of FM beat range sensor measurement. 

Measured distance r can be expressed as: 

reb
m

b fff
ff

fcr −=
Δ∗

∗= ,  (2) 

where c is speed of light, fm mean modulation frequency, Δf the difference between 
highest and lowest frequency in modulated run, fe emitted beam frequency and fr

reflected beam frequency. 

Time of flight range finders face the same problems as any other active sensors when 
imaging specular surfaces. They can be relatively slow due to long integration time at the 
receiver end. The speed of pulse time delay sensors is also limited by the minimum 
resolvable interval between two pulses. Compared to triangulation based systems, time of 
flight sensors have the advantage of offering a greater operating range (up to tens of 
meters), which is very valuable in outdoor robotic navigation tasks. 
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3. State of the Art 

There are many spectral image segmentation algorithms published in computer vision 
literature and a number of good survey articles (Besl & Jain, 1985), (Sinha & Jain, 1994) is 
available but substantially less range image segmentation algorithms were published. 
Mutual comparison of their segmentation quality and performance is very difficult because 
of lack of sound experimental evaluation results. A rare exception in the area of planar face 
objects range segmentation is published in (Hoover et al., 1996a) together with experimental 
data available on their Internet server. Because this evaluation methodology became de facto 
standard in the area of planar range segmentation algorithms comparison, these data and 
results are used also for our algorithm evaluation. 

3.1. Range Segmentation Principles 

There are several methods for segmenting an image into regions, which, subsequently, can 
be analyzed, based on their shapes, sizes, relative positions, and other characteristics, and 
there are several possible categorizations of segmentation techniques. The most common 
categorization accepted also in this chapter sorts segmentation methods into three or four 
different philosophical perspectives. We name them after the terminology "pixel based 
segmentation, edge based segmentation, region based segmentation and hybrid 
segmentation".

3.1.1. Pixel Based Segmentation

Pixel based segmentation is the most local method to address the task of image 
segmentation. Every pixel has to be sorted to some certain class. At last, the pixels belonging 
to the same class which are contiguous will constitute one segmented region. 

3.1.2. Edge Based Segmentation

Edge based segmentation is more global than pixel based segmentation, but it is more local 
when compared to the area based segmentation. So it is on the "middle level". 
Edge based segmentation make use of the clue that "how human see" for the second time, 
because a person always has the principle that there is an edge in some certain sense 
between two segmentable objects (Zhang & Zhao, 1995), (Palmer et al., 1996). An edge pixel 
is characterized by a vector that shows a particular position, size and direction of 
discontinuity. Sometimes only the size is determined. The "direction" of the edge is 
perpendicular to the "direction" of the rim of the object. 

3.1.3. Region Based Segmentation

Among the four surveyed approaches, region based segmentation is the most global 
method. This approach groups pixels into regions based upon two criteria: proximity and 
homogeneity. Most region based methods produce these groupings either by splitting the 
image, or its regions, into smaller regions (Lee et al., 1998), merging small regions into larger 
ones (Hoover et al., 1996a), (Besl & Jain, 1988), or splitting and merging until the criteria are 
maximally satisfied (Haralick & Shapiro, 1985), (Chang, 1994), (Hijjatoleslami & Kittler, 
1998). In two-dimensional region growing, regions that have pixels that are "four-connected" 
(Fig. 6.-left), that is, directly neighboring each other in any of the four  horizontal and 
vertical directions, are considered to be in proximity to one another. Other region growing 
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algorithms extend these criteria to "eight-connected" pixels by also including the four 
diagonal directions (Fig. 6.-right). 

Four-Connected Neighbours & Eight-Connected Neighbours 
Fig. 6. Neighbourhood examples. 

The second criterion, homogeneity, is satisfied by an implementation specific function that 
quantifies the similarity between regions. This function may be based on a comparison of 
any single or combination of available region statistics.

3.1.4. Hybrid Segmentation

Hybrid techniques are trying to combine advantages of two or more previously described 
segmentation methods. They are expected to provide more accurate segmentation of 
images. Pavlidis et al. (Pavlidis & Liow, 1990) describe a method to combine segments 
obtained by using a region-growing approach, where the edges between regions are 
eliminated or modified based on contrast, gradient and shape of the boundary. Haddon and 
Boyce (Haddon & Boyce, 1990) generate regions by partitioning the image co-occurrence 
matrix and then refining them by relaxation using the edge information. Chu and Aggarwal 
(Chu & Aggarwal, 1993) present an optimization method to integrate segmentation and 
edge maps obtained from several channels, including visible, infrared, etc., where user 
specified weights and arbitrary mixing of region and edge maps are allowed. The method 
presented in this chapter can be classified as hybrid technique, because we use edge 
detection as the first step of the algorithm and segment based region growing as the second 
step.

3.2. Planar Face Segmentation Algorithms

A specially simplified range image segmentation task occurs when we may assume some 
additional prior information about the segmented scene. One of the most frequent 
assumptions is planarity of range scene objects faces. A planar surface can be characterized 
as a connected set of 3D surface points at which the two principal curvatures (alternatively, 
the Gaussian and mean curvatures) are zero. It gives the chance to simplify the model of the 
region and thus simplify the whole segmentation process. 
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3.2.1. The USF Range Segmentation Algorithm

This segmenter (Hoover et al., 1996a) works by computing a planar fit for each pixel and 
then growing regions whose pixels have similar plane equations. The pixel with the smallest 
interiorness measure is chosen as a seed point for region growing. The border of the region 
is recursively grown until no pixels join, at which time a new region is started using the next 
best available seed pixel (based on interiorness measure). Pixels are only allowed to 
participate in this process once. If a region's final size is below a threshold, then the region is 
discarded. This algorithm shows good segmentation results over test sets especially in 
under-segmentation measure and has only 5 parameters, but it is discriminated by its 
computational speed.  

3.2.2. The WSU Range Segmentation Algorithm

The WSU range image segmentation method (Hoffman & Jain, 1987), (Flynn & Jain, 1991) is 
not optimized for polyhedral objects but can accommodate natural quadric surfaces as well. 
It was modified to accept only first-order surface fits, but no other special steps were taken 
to exploit the planar nature of the scenes. Prior to any processing, the range points are 
uniformly scaled to fit within a 5×5 cube. Than jump edge pixels are identified. Surface 
normals are estimated at each range pixel with no jump edges in a neighbourhood. The six-
dimensional image is formed by concatenating the estimated surface normals to their 
corresponding pixels.  
These 6-vectors are fed to a squared-error clustering algorithm, which finds groupings in the 
data set based on similarity between the data points. Since these points reflect both position 
and orientation, the tendency is to produce clustering consisting of connected image subsets, 
with pixels in each cluster having similar orientation. The selected clustering is converted 
into an image segmentation by assigning each range pixel to the closest cluster centre in the 
clustering. A further merging step joins segments if they are adjacent and have similar 
parameters. This algorithm achieved the worst result in all segmentation quality measures 
among the four compared algorithms. The next drawback of this algorithm is high number 
of tuneable parameters and relatively high computational times. 

3.2.3. The UBP range segmentation algorithm

This segmenter (Jiang & Bunke, 1994) is based on the fact that, in the ideal case, the points 
on a scan line that belong to a planar surface form a straight 3D line segment. On the other 
hand, all points on a straight 3D line segment surely belong to the same planar surface. 
Therefore, they first divide each scan line into straight line segments and subsequently 
perform a region growing process using the set of line segments instead of the individual 
pixels.
A potential seed region for region growing is a triple of line segments on three neighbouring 
scan lines. The candidate with the largest total line segment length is chosen as the optimal 
seed region. In the subsequent region growing process, a line segment is added to the region 
if the perpendicular distance between its two end points and the plane equation of the 
region is within a dynamic threshold. This process is repeated until no more line segments 
can be added, at which time a new region is started using the next best available seed 
region. If a region's final size is below a threshold, then the region is discarded. This 
algorithm is probably the best one of all methods surveyed in (Hoover et al., 1996a). It 
achieves high number of correctly detected region over both test sets, low number of 
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undersegmented regions, but it oversegments some regions. The number of parameters is 
relatively high. This is the fastest algorithm surveyed in (Hoover et al., 1996a). 

3.2.4. The UE Range Segmentation Algorithm

The UE segmentation algorithm (Hoover et al., 1996a) is a region growing type of algorithm 
along the lines of the USF segmenter. Initial surface normals are calculated at each pixel 
using a plane fit to the data. Depth and normal discontinuity detection is performed using 
simple thresholds between neighbouring pixels. Gaussian (H) and mean (K) curvature are 
estimated at each pixel. Pixels can be labelled as belonging to particular surface types based 
on the combined signs of the (H, K) values.  Once each pixel is labelled properly with the 
signs of H and K, any eight--connected pixels of similar labelling are grouped to form initial 
regions. This segmentation map is then morphologically dilated and eroded in a specifiable 
manner to fill small Unknown areas, remove small regions, and separate thinly connected 
components. For each region in the initial segmentation above a minimal size a least squares 
surface fitting is performed. Then each region in turn is grown. The UE segmenter obtains 
slightly better measures of correct detection than does the UBP segmenter but the difference 
in processing speeds is noteworthy. The main drawback of this algorithm is high number of 
its parameters. Nearly a dozen values should be adjusted before the segmentation. 

3.2.5. Robust Adaptive Segmentation (ALKS) Algorithm

The authors of this method (Lee et al., 1998) proposed an image segmentation technique  
using the robust, adaptive least kth order squares (ALKS) estimator which minimizes the kth
order statistics of the squared of residuals. The optimal value of k is determined from the 
data, and the procedure detects the homogeneous surface patch representing the relative 
majority of the pixels. The method defines the region to be processed as the largest 
connected component of unlabelled pixels. Applies the ALKS procedure to the selected 
region and discriminates the inliers, labels the largest connected component of inliers as the 
delineated homogeneous patch and refines the model parameter estimates by a least--
squares fit to the inliers. Than it repeats these steps until the size of the largest connected 
component is less than a threshold. To eliminate the isolated outliers surrounded by inliers 
an unlabelled pixel is allocated to the class of the majority of its labelled four-connected 
neighbours. For this method we can only compare results published in the article (Lee et al., 
1998). These results show that the ALKS method tends to undersegment some faces. We 
have no information about computational times for this method. 

3.2.6. Segmentation through the integration of different strategies (PPU)

The authors of this paper (Bock & Guerra, 2001) consider the problem of segmenting range 
images into planar regions. 
The approach they present combines different strategies for grouping image elements to 
estimate the parameters of the planes that best represent the range data. The strategies differ 
not only in the way candidate planes are hypothesized but also in the objective function 
used to select the best plane among the potential candidates. The method they consider 
integrates in an effective way different strategies for plane recovery. There are mainly three 
procedures all based on random sampling. Three main procedures are invoked sequentially 
in a given order for new plane detection in iteration, the next one executed only when the 
previous ones do not detect a significant plane. Once the parameters of the best plane are 
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found at a given iteration, the plane is expanded over the entire image and all the fragments 
of the same surface in the image are labelled as belonging to the same plane. This method 
achieved the worst result in the comparison. 

3.2.7. The OU segmentation algorithm

The segmentation algorithm OU (Jiang et al., 2000) is based on the analysis of intersection of 
the scene by arbitrary planes. At first, the range image is divided into two hemi-spaces by an 
imaginary plane, and then it binarizes each pixel on the range image. On that image, the 
issue of plane detection is turned into edge detection on the binary image. Authors applied 
Hough transform for derivative image to do it, because test images contain much noise. The 
topological information in the binary image can also be used for end-point determination 
and grouping detected line segments. The imaginary plane is translated step by step and the 
set of line segments is obtained. To accelerate this algorithm, the voting space for Hough 
transform is limited using information of prior line detection. Then planes are made by 
grouping line segments: If two lines share a plane, the lines are parallel to each other and 
have a close distance. Therefore all line segments are classified into several groups using 
gradient, distance and arrangement of end--points of the lines. The topological cue of binary 
image can be also exploited. Finally the range image is filled by polygons which are 
generated from two neighbouring lines. Against the case of fragmentation of polygons the 
normal vectors of each planar surface are evaluated and unified if the difference of normal 
vectors of neighbouring planar surfaces is small enough. 

3.2.8. The UA segmentation algorithm

The segmentation algorithm UA (Jiang et al., 2000 performs a fast hierarchical processing in 
a multiresolution pyramid, or quadtree, based on (Loke & duBuf, 1998) and (Wilson & 
Spann, 1988). It must be noted that the method has only very recently been adapted for 
range images. Its current disadvantage is the information loss which is caused by linearly 
combining the components of the surface normal vector. A quadtree of L levels is built with 
at the base (level 0) the original range image on a regular grid. Low-resolution depth data at 
each higher level are determined by a low-pass filtering of depths at the lower level in no 
overlapping blocks of size 2×2. This reduces the noise, allowing the estimation of accurate 
normal vectors at the highest level L - 1. New filter technique is applied in order to increase 
the homogeneity of the data and to reduce the noise. At level L - 1, data clusters are 
determined using the local-centroid algorithm (Wilson & Spann, 1988). Thereafter, the 
segmentation at level L - 1 is obtained by setting each pixel to the label of its nearest cluster. 
Starting at level L - 1 and ending at level 1, the segmentation at each lower level is obtained 
by refining the boundary. At level 0, a component labelling is performed, because the 
segmentation may contain regions which have the same label, but which are not spatially 
connected. All regions smaller than a minimum region size are disregarded. 

3.3. Non-Planar Face Segmentation Algorithms

If the measured range scene contains general objects and we cannot use the simplifying 
planar face assumption, the segmentation task is substantially more difficult. There is very 
few non-planar range segmentation algorithms published and no benchmarking 
methodology generally accepted. 



Vision Systems - Segmentation and Pattern Recognition 36

3.3.1. The UBC Range Segmentation Algorithm 

The UBC segmenter (Jiang & Bunke, 1998) consists of two parts: edge detection and 
grouping of edge points into closed regions. It makes use of the fact that each scan line (row, 
column or diagonal) of a range image is a curve in 3-D space. Therefore, it partitions each 
scan line into a set of curve segments by means of a splitting method. All the splitting points 
represent potential edges. The jump and crease edge strength of the edge candidates are 
evaluated by analytically computing the height difference and the angle between two 
adjacent curve segments, respectively. Each pixel can be assigned up to four edge strength 
values of each type (jump and crease) from the four scan lines passing through the pixel. 
These edge strength values are combined by taking the maximum to define the overall edge 
strength of each type. The grouping process is based on a hypochapter generation and 
verification approach. From the edge map, regions can be found by a component labelling. 
Due to the inevitable gaps in the edge chains, however, this initial grouping usually results 
in under-segmentation. To recognize the correctly segmented and under-segmented regions, 
a region test is performed for each region of the initial segmentation. If the region test is 
successful, the corresponding region is registered. Otherwise, the edge points within the 
region are dilated once, potentially closing the gaps. Then, hypochapter generation 
(component labelling) and verification (region test) are carried out for the region. This 
process is recursively done until the generated regions have been successfully verified or 
they are no longer considered because of too small a region size. The results suggest that the 
UBC segmentation algorithm substantially out-performs the BJ algorithm. However, these 
results should be interpreted carefully. The UBC segmenter has a fundamental limitation. 
The edge detection method described above is able to detect jump and crease edges but not 
smooth edges (discontinuities only in curvature). This seems to be true for all edge detectors 
reported in the literature. 

3.3.2. Variable Order Surface Fitting (BJ) Algorithm

Besl and Jain developed a segmentation algorithm (Besl & Jain, 1988) which uses signs of 
surface curvature to obtain a coarse segmentation and iteratively refines it by fitting 
bivariate polynomials to the surfaces. The algorithm begins by estimating the mean and 
Gaussian surface curvature at every pixel and uses the signs of the curvatures to classify 
each pixel as belonging to one of eight surface types. The resultant coarse segmentation is 
enhanced by an iterative region growing procedure. For every coarse region, a subregion of 
a size at or above a threshold is selected to be a seed region. Low order bivariate 
polynomials are used to produce an estimated surface fit to the seed region. Next, all pixels 
in all regions of the image that are currently outside the seed region are tested for possible 
inclusion into the current region.  The largest connected region which is composed of pixels 
in the seed region and pixels that passes the compatibility tests is chosen as the new seed 
region. Expansion continues until either there is almost zero change in region size since the 
last iteration, or when the surface fitting error becomes larger than a threshold. Finally, fit 
error is calculated, and if it falls below a threshold the region is accepted. If not, the region is 
rejected and the seed region that produced it is marked off so that it may not be used again.  

3.3.3. Industrial Research Limited Simple Surface Segmentation (IRLBC and IRLRG)

The authors of this paper (McIvor et al., 1997) described a method for the recognition of 
simple curved surface patches from dense 3--D range data, such as that provided by a 
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structured light system. Patches from planes, spheres, cylinders, and ruled surfaces are 
considered. The approach can be summarised as follows. The first step is to estimate the 
local surface geometry (the principal quadric) at each visible surface point. Then points at 
which the signs of the Gaussian and mean curvatures are inconsistent with those of a 
particular surface type are rejected from further consideration. Each remaining point is 
mapped to a point in the parameter space of the surface type. By using an unsupervised  
Bayesian classification (IRLBC method) or region growing algorithm (IRLRG method), the 
clusters in parameter space that correspond to surface patches are identified, and the 
parameters of that surface can be determined. 

4. Multimodal Range Image Segmentation 

4.1. Face Outline Detection  

We assume   mutually registered range  (yt,r) and intensity (yt,i) data Yt =  [yt,r,yt,i ]T of the 
scene to be modeled  in the unshaded part (scene part with valid range measurements)  by 
an adaptive  causal  simultaneous autoregressive model (SAR) in some chosen direction: 

 Yt = γZt + εt                (3) 

Where γ = [A1,…,Aη] is the 2 × η unknown parameter matrix  and η = card It. We denote the 
2η × 1 data vector Zt = [Yt-iT : ∀i∈It] with a multi-index t= (m,n); m, n are the  row and  
column indices, respectively. The multiindex changes according to chosen direction of  
movement  on  the  image  plane e.g. t-1=(m,n-1), t-2=(m,n-2),…,It is some contextual causal 
or unilateral neighbour index shift set. The white noise vector εt has zero mean and constant 
but unknown covariance matrix  Ω. We further assume uncorrelated noise vector 
components, i.e., E{εt,r εt,i } = 0 ∀t and the probability density of εt to have the  normal 
distribution  independent of previous data and being the same for every time t. The  task 
consists in finding the conditional prediction density p(Yt|Y(t-1)) given the known process 
history Y(t-1) = {Yt-1, Yt-2, …, Y1,Zt, Zt-1,…, Z1} and taking its conditional  mean  estimation  
for the predicted data. If the prediction error is greater than an adaptive threshold the 
algorithm assumes an object face edge pixel.  
Assuming  normality of the white noise component εt, conditional independence between  
pixels and the normal-Wishart parameter prior, we have shown (Haindl & Šimberová, 1992) 
that the conditional mean value is: 
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and V0 is a positive definite  matrix. We assume slowly changing parameters, consequently 
these equations were modified using a constant exponential "forgetting factor" α to allow 
parameter adaptation. It is easy to check (see (Haindl & Šimberová, 1992)) also the validity 
of the following recursive parameter estimator: 
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Let us define the following three conditions with adaptive thresholds (7),(8): 
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where S is the shaded (unmeasured part) of the range image. The pixel t is classified as an 
object edge pixel (a detected step discontinuity pixel) iff either the conditions  (6),(7) or (6), 
non (7),(8) hold. Both adaptive thresholds are proportional to the local mean prediction 
error estimation. 

4.2. Competing Models

Let us assume two SAR models (3) M1 and M2 with the same number of unknown 
parameters (η1 = η2 = η) and an identical neighbour index shift sets It‘. They differ only in 
their forgetting factors α1>α2. The model M1, α1 ≈1 represents homogeneous image areas 
while the second model better represents new information coming from crossing some face 
borders because it allows quicker adaptation to this new information. The optimal decision 
rule for minimizing the average probability of decision error chooses the maximum a 
posterior probability model, i.e. a model whose conditional probability given the past data is 
the highest one. Predictors used in the presented algorithm can be therefore completed as: 
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where Zt is a  data vector identical to both models and 
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The analytical solution has the following form (Haindl & Šimberová, 1992): 
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where k is a common constant. All statistics related to a model M1 (6), (11) are computed 
using the exponential forgetting constant α1 while symmetrical statistics of the model M2 are 
computed using the second constant α2.
The solution of  (11) uses the following notations: 
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The determinant |Vzz(t)| as well as λt can be evaluated recursively (Haindl & Šimberová, 
1992):
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For numerical realization of the predictor (9) see discussion in (Haindl & Šimberová, 1992). 

4.3. Face Detection

The previous step of the algorithm detects correct face outlines however some pixels on 
these edges can be either missing or edges can be incomplete. This missing information is 
estimated in a curve segment-based region growing process. Curves to be grown do not 
need to be of maximal length through the corresponding object face. Any curve segments 
can serve as initial estimation however longer curve segments speed up the region growing 
step. The only restriction imposed on them is that they are not allowed to cross face borders 
detected in the previous step of the algorithm. These curve segments can be generated in 
two mutually perpendicular directions but our current implementation uses only one of 
these directions.   
A curve is represented using the cubic spline model: 
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for the interval ri ∈ <si;si+Δ>, Δ=1 for the single-scale version of the algorithm,  i=1 for 
columnwise or i=2 for rowwise direction, and rj=sj for j ≠ i. Splines representing  segments 
in a chosen direction  are  computed  and  parameter space Ξ is created over the image 
lattice. Two curve segments si,ti in the same column (row) are merged together iff: 
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1. They have similar slope 
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Both conditions are satisfied if we require similar spline parameters aSi, bSi, cSi for segments 
to be merged. The similarity measure chosen is the squared Euclidean distance. Similarly 
two parallel neighbouring curve segments r,  r ∈ <si; si + 1> × rj ∈ <si; si + 1> × (rj + 1) are 
merged if they share similar parameters in their corresponding spline intervals (ri). A fixed 
threshold we use in the current version depends on data; it has to be large enough to allow 
for parameters changes during a curved face following but simultaneously not too large to 
merge different faces together. 

     

     
Fig. 7. Dumbbell intensity   and range image, the combined edge map and the segmentation 
result.
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5. Evaluation Methodology 

For the segmentation quality evaluation we decided to use test data and methodology 
provided by (Hoover et al., 1996a) and (Hoover et al., 1996b) authors provided not only 
range image data, but the data together with ground truth segmentation of all images and a 
tool, which measures quality of segmentation results. Although no such experimental data 
can prove properties of a segmentation algorithm this set is large enough to suggest its 
expected behaviour and enables to rank the tested algorithm with some other previously 
published ones. Last but not least it is a rare world-wide accepted methodology for 
comparing planar face range image segmentation results. 
The problem of image segmentation is a classical one and yet different definitions exist in 
the literature. Thus we begin by formally defining the problem we consider here. Let R
represents the entire image region. We may view segmentation as a process that partitions R
into n subregions R1, R2,…, Rn, such that 

1. RR
n

i
i =

=1

2. Ri is a connected region, i=1,2,…,n
3. Ri ∩ Rj = 0 for all i and j, i ≠ j
4. Pred(Ri) = TRUE for i=1,2,…,n and 
5. Pred(Ri ∩ Rj)= FALSE for i ≠ j

where Pred(Ri) is a logical predicate over the points in set Ri and 0 is the empty set. 
In some works the item 5 of this definition is modified to apply only to adjacent regions, as 
no bordering regions may well have the same properties, sometimes the item 2 is completely 
left out. Besides these inconsistencies, there are technical difficulties in using this definition 
for range image segmentation. Some range pixels do not contain accurate depth 
measurements of surfaces. This naturally leads to allowing non--surface pixels (areas), 
perhaps of various types. Regarding the above definition, non-surface areas do not satisfy 
the same predicate constraints (items 4 and 5) as regions that represent surfaces. It is also 
often convenient to use the same region label for all non-surface pixels in the range image, 
regardless of whether they are spatially connected. This violates item 2 of the above 
definition. Finally, we also require that the segmentation be ‘crisp’. No sub pixel, multiple or 
‘fuzzy’ pixel labelling are allowed. Comparison of machine segmentation (MS) of a range 
image to the ground truth (GT) is done as follows. Let M be the number of regions in the 
MS, and N be the number of regions in the GT. GT does not include any non-surface pixel 
areas. Similarly, MS does not include any pixels left unlabelled (or not assigned to a surface) 
by segmenter. Let the number of pixels in each machine-segmented region Rm (where 
m=1,…, M) be denoted PM. Similarly, let the number of pixels in each ground truth region Rn

(where n=1,…, N) be denoted Pn. Let Omn = Rm ∩ Rn be the number of pixels of both regions 
Rm and Rn whose image coordinates occupy the same range in their respective images. Thus, 
if there is no overlap between the two regions, Omn = 0, while if there is complete overlap, 
Omn = Pm = Pn.
An M × N contingency table is created, containing Omn for m=1,…, M and n=1,…, N.
Implicitly attached to each entry are the percentages of overlap with respect to the size of 
each region. Omn/Pm represents the percentage of m that the intersection of m and n covers. 
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Similarly, Omn/Pn represents the percentage of n that the intersection of m and n covers. 
These percentages are used in determining region segmentation classifications. 
We consider five types of region classification: correct detection, over-segmentation, under-
segmentation, missed and noise. Over-segmentation, or multiple detections of a single 
surface, results in an incorrect topology. Under-segmentation, or insufficient separation of 
multiple surfaces, results in a subset of the correct topology and a deformed geometry. A 
missed classification is used when a segmenter fails to find a surface which appears in the 
image (false negative). A noise classification is used when the segmenter supposes the 
existence of a surface which is not in the image (false positive). Obviously, these metrics 
could have varying importance in different applications. 
The formulas for deciding classification are based upon a threshold T, where 0.5 < T ≤ 1.0. 
The value of T can be set to reflect the strictness of definition desired. The following metrics 
define each classification: 

1. An instance of a correct detection classification 
A pair of regions Rn in the GT image and Rm in the MS image are classified as an 
instance of correct detection if 
a) Omn ≥ T × Pm (at least T percent of the pixels in region Rm in then MS image 

are marked as pixels in region Rn in the GT image), and
b) Omn ≥ T × Pn (at least T percent of the pixels in region Rn in then GT image 

are marked as pixels in   region  Rm in the MS image).

2. An instance of an over-segmentation classification 
A region Rn in the GT image and a set of regions in the MS image Rm1,…,Rmx, where 
2 ≤x ≤ M, are classified as an instance of over-segmentation if 
a) ∀ i ∈ x, Omi n ≥ T × Pm (at least T percent of the pixels in each region Rmi

in the MS   image are marked as pixels in region Rn in the GT image), and 

b)
=

x

i 1

Omi n ≥ T × Pn (at least T percent of the pixels in region Rn in the GT 

image are marked as pixels in the union of regions Rm1,…, Rmx in the MS 
image).

3. An instance of an under-segmentation classification 
A set of regions in the GT image Rn1,…, Rnx, where 2 ≤x ≤ M, and a region Rm in 
the MS image are classified as any instance of under-segmentation if 

a)
=

x

i 1

Omni ≥ T × Pm (at least T percent of the pixels in region Rm in the MS 

image are marked as pixels in the union of regions Rn1,…,Rnx in the GT image), 
and

b) ∀ i ∈ x, Om ni ≥ T × Pni (at least T percent of the pixels in each 
region Rni in the GT image are marked as pixels in region Rm in the MS image). 



Multimodal Range Image Segmentation 43

4. An instance of a missed classification 
A region Rn in the GT image that does not participate in any instance of correct 
detection, over-segmentation or under-segmentation is classified as missed. 

5. An instance of a noise classification 
A region Rm in the MS image that does not participate in any instance of correct 
detection, over-segmentation or under-segmentation is classified as noise. 

The authors of (Hoover et al., 1996a) created publicly available tool, which measures results 
of segmentation using described performance metrics. There are certainly many other 
possibilities how to compare segmentation results and some of them will result in different 
algorithms rating but above performance metrics is the only one which is generally accepted 
and hence enables mutual comparison of different published results. 

6. Results 

We tested the algorithm on a test set (Powel et al., 1998) of 39 range images from scenes 
containing planar, cylindrical, spherical, conical and toroidal object surfaces. This set was 
created by authors of (Powel et al., 1998) using a K2T structured light scanner model GRF-2. 
The scanner precision is 0.1 mm and data were quantized into a 640 × 480 × 8 bit data space. 
Single scenes have between 1 to 120 surface patches of varying sizes. We compared our 
results Fig. 8. with three previously published methods (Besl & Jain, 1988), (Jiang & Bunke, 
1998), (Haindl & Žid, 1998). As can be seen on Fig. 8. (colour version) our method 
outperforms these alternative methods. The average improvement over our previously 
published method (Haindl & Žid, 1998) in the correct segmentation criterion (Hoover et al., 
1996) is 30%. Alternatively the results were evaluated also visually comparing range data 
segmentation results with corresponding intensity images (Figs. 7., 9.). 
Visual comparison of the results demonstrates very good quality of detected borders using 
our algorithm. The borders are clean and accurately located. The segmentation algorithm 
properly found most required non-planar object surfaces in our test examples. 

Fig. 8. Range, intensity measurements and the corresponding Besl & Jain (Besl & Jain, 1988) 
(upper row), UB (Jiang & Bunke, 1998), (Haindl & Žid, 1998) and the presented method 
abacus segmentation results. 
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Fig. 9. Annuloid range,  intensity and segmentation results  images. 

7. Conclusions 

We proposed novel fast and accurate range segmentation method based on the combination 
of range & intensity profile modelling and curve-based region growing. A range profile is 
modelled using an adaptive simultaneous regression model. The recursive adaptive 
predictor uses spatial correlation from neighbouring data what results in improved 
robustness of the algorithm over rigid schemes, which are affected with outliers often 
present at the boundary of distinct shapes. A parallel implementation of the algorithm is 
straightforward, every image row and column can be processed independently by its 
dedicated processor. The region growing step is based on the cubic spline curve model. The 
algorithm performance is demonstrated on the set of test range images available on the 
University of South Florida web site. These preliminary test results of the algorithm are 
encouraging; the proposed method was mostly able to find   objects present in all our 
experimental scenes with excellent border localization precision and outperformed the 
alternative segmenters. The proposed method is fast and numerically robust so it can be 
used in an on-line virtual reality acquisition system. However further work is still needed to 
replace current fixed region growing threshold with an adaptive threshold which could 
accommodate different types of range data, to test the performance on noisy laser data as 
well as on scenes with large number of curved faces. 
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1. Introduction 

Moving shadow detection is an important topic in computer vision applications, including 
video conference, vehicle tracking, and three-dimensional (3-D) object identification, and 
has been actively investigated in recent years. Because, in real world scenes, moving cast 
shadows may be detected as foreground object and plauge the moving objects 
segmentation. For example, in traffic surveillance situation, shadows cast by moving 
vehicles may be segmented as part of vehicles, which not only interfere with the size and 
shape information but also generate occlusions (as Fig. 1 illustrates). At the same time, 
moving cast shadow detection can provide reference information to the understanting of the 
illumination in the scenes. Therefore, an effective shadow detection algorithm can greatly 
benefit the practical image analysis system. 

   

   
Fig. 1. Examples of moving cast shadows. 
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Fig. 2. Illumination model of moving cast shadows: the umbra, penumbra, and geometric 
relationship.

Essentially, shadow is formed by the change of illumination conditions and shadow 
detection comes down to a problem of finding the illumination invariant features. From the 
viewpoint of geometric relationship, shadow can be divided into umbra and penumbra 
(Stander et al., 1999). The umbra corresponds to the background area where the direct light 
is almost totally blocked by the foreground object, whereas in the penumbra area, the light is 
partially blocked (as Fig. 2 illustrates). From the viewpoint of motion property, shadow can 
be divided into static shadow and dynamic shadow. Static shadow is cast by static object 
while dynamic shadow is cast by moving object. In video surveilance application, static 
shadows have little effect on the moving objects segmentation. Therefore, we concentrate on 
the detection of dynamic/moving cast shadows in the image sequence captured by static 
camera in this chapter.  

2. Illumination property of cast shadow 

For an image acquired by camera, the intensity of pixel f(x,y) can be given as: 

 f(x,y)= i(x,y)×r(x,y) (1) 

where i(x,y) represents the illumination component and r(x,y) represents the reflectance 
component of object surface. i(x,y) is computed as the amount of light power per receiving 
object surface area and can further be expressed as follows (Stander et al., 1999). 

⋅  
⋅ ⋅

 

a p

a p

a

+ c cos(j)              
;+ t(x, y) c cos(j)   

                                 

c illuminated area
i(x, y) = c penumbra area   

c umbra area 
 (2) 

where
- cp intensity of the light source; 
- angle enclosed by light source direction and surface normal; 
- ca intensity of ambient light; 
- t transition inside the penumbra which depends on the light source and scene geometry, 

and 0  t(x,y) 1.
Many works have been put forward in the literature for moving shadow detection. From 
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the viewpoint of the information and model utilized, these methods can be classified into 
three categories: color model, textural model, and geometric model. Additionally, statistical 
model is used to tackle the problem. Most of the state-of-the-art are based on the reference 
image and we consider it has been acquired beforehand. Let the reference image and 
shaded image be B and F, respevtively. In the following part of this chapter, we introduce 
each categories of methods for moving cast shadow detection. 

Fig. 3. The distribution of the background difference and background ratio in HSV color 
space: shadow pixels and foreground pixels. 

3. Colour/Spectrum-based shadow detection 

The color/spectrum model attempts to describe the color change of shaded pixel and find 
the color feature that is illumination invariant. Cucchiara et al. (Cucchiara et al., 2001;  
Cucchiara et al., 2003) investigated the Hue-Saturation-Value (HSV) color property of cast 
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shadows, and it is found that shadows change the hue component slightly and decrease the 
saturation component significantly. The distribution of FV(x, y)/BV(x, y), FS(x, y)-BS(x, y), 
and |FH(x, y)-BH(x, y)| are given in Fig. 3 for shadows pixels and foreground pixels, 
respectively. It can be found that shadow pixels cluster in a small region and have distinct 
distribution compared with foreground pixels. The shadows are then discriminated from 
foreground objects by using empirical thresholds on HSV color space as follows. 

V
S S H H

S HV

F (x,y) ) F (x,y) - B (x,y)) ) F (x,y) - B (x,y) )
B (x,y)

(α ≤ ≤ β  (( ≤ τ  ( ≤ τAND AND  (3) 

By using above method, the shadow pixels can be discriminated from foreground pixels 
effectively. This method has been included in the Sakbot system (Statistical and Knowledge-
Based Object Tracker).  
Salvador et al. (Salvador et al. 2004) proposed a normalized RGB color space, C1C2C3, to 
segment the shadows in still images and video sequences. The C1C2C3 is defined as follows. 

1

2

3

R(x,y)C (x,y) = arctan ;
max(G(x,y),B(x,y))

G(x,y)C (x,y) = arctan ;
max(R(x,y),B(x,y))

B(x,y)C (x,y) = arctan ;
max(R(x,y),G(x,y))

 (4) 

After integrating the intensity of neighbouring region, the shadow is detected as the pixels 
change greatly in C1C2C3 colour space. Considering the shadow decrease the intensity of 
RGB component in a same scale, it can be found that C1C2C3 is illumination invariant.  

Fig. 4. A scatter plot in the color ratios space of a shaded pixels set. The line corresponds to 
the equal ratio in RGB components.  
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Siala et al. (Siala et al., 2004) consider the pixel’s intensity change equally in RGB colour 
components and a diagonal model is proposed to describe the color distortion of shadow in 
RGB space. The color distortion is defined as (dR=FR/BR, dG=FG/BG, dB=FB/BB), and the 
color distortion of shaded pixel is distributed near the line dR=dG=dB (as show in Fig. 4), 
which does not hold for foreground objects. Therefore, the shadow pixels are discriminated 
from foreground objects according to the distance between pixel’s color distortion and the 
line dR=dG=dB.

Fig. 5. Pixels classification using the normalized color distortion and normalized brightness 
distortion: original background, shaded background, highlight background, and moving 
foreground objects. 

Horprasert et al. (Horprasert et al., 1999) proposed a computational color model which 
separates brightness from the chromaticity component using brightness distortions (BD) and 
chromaticity distortions (CD), which are defined as follows. 

R R G G B B
2 2 2
R G B

2 2 2

R G B

R G B

R R

R

F (x,y) μ (x,y) F (x,y) μ (x,y) F (x,y) μ (x,y)+ +
(x,y) (x,y) (x,y)                  BD(x,y) = ;

μ (x,y) μ (x,y) μ (x,y)+ +
(x,y) (x,y) (x,y)

F (x,y) - BD μ (x,y)CD(x,y) =
(x,y)

⋅ ⋅ ⋅

⋅
2 2 2

G G B B

G B

F (x,y) - BD μ (x,y) F (x,y) - BD μ (x,y) ;
(x,y) (x,y)

⋅ ⋅

 (5) 
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In which (μR, μG, μB) and ( R, G, B) are the arithmetic means and variance of the pixel's red, 
green, and blue values computed over N background frames. By imposing thresholds on the 
normalized color distortion (NCD) and normalized brightness distortion (NBD), the pixels 
are classified into original background, shaded background, highlight background, and 
moving foreground objects as follows. 

CD alo

a1 a2

Foreground : CD >  OR BD < , else
Background : BD < D BD < , else

Shadow : BD < 0, else                       
Highlight : otherwise                                

  
 (6) 

The strategy used in Eq. (6) is depicted in Fig. 5.  
Nadimi, S. & Bhanu, B (Nadimi, S. & Bhanu, B., 2004) employed a physical approach for 
moving shadow detection in outdoor scenes. A dichromatic reflection model and a spatio-
temporal albedo normalization test are used for learning the background color and 
separating shadow from foreground in outdoor image sequences. According to the 
dichromatic reflection model, pixel value F(x,y) in the outdoor scene can be represented as 
follows. 

1 2

(x,y),1 (x,y),1 (x,y),2 (x,y),1F(x,y) = K L ( )f(l,e,s)d + K L ( )d ;  (7) 

in which the first and second items correspond to the intensiy caused by the sun and sky;  
K(x,y), 1 and K(x,y), 2 are the coefficient of reflectances due to sun and sky; L(x,y), 1 and L(x,y), 2 are 
intensity of the illumination sources of sun and sky;  f(l,e,s) is geometric term; l is the 
incident angle of illumination; e is the angle for viewing direction; s is the angle for specular 
reflection. The spatio-temporal albedo H between pixel F(x,y) and its neighboring pixel (take 
F(x+1,y) as example) is defined as follows. 

1 2

1 2

t+1 t t+1 t
1 2

t+1 t t+1 t

R - R                    (F(x,y),F(x + 1,y)) = ;
R + R

F (x,y) - F (x,y) F (x + 1,y) - F (x + 1,y)R = ;R = ;
F (x,y) + F (x,y) F (x + 1,y) + F (x + 1,y)

 (8) 

Pixel F(x,y) and F(x+1,y) is assumed to have the same reflectance if the following condition 
is satisfied: 

1    if  (F(x,y),F(x + 1,y)) < T
C[F(x,y),F(x + 1,y)] = ;

0    therwise                             
  

 (9) 

Cavallaro et al. (Cavallaro et al., 2005) detected shadow by exploiting color information in a 
selective way. In each image the relevant areas to analyze are identified and the color 
components that carry most of discriminating information are selected for shadow 
detection.  
Color model has shown its powerfulness in shadow detection. Nevertheless, the foreground 
objects may have similar color with the moving shadows, and it becomes not reliable to 
detect moving shadows by using only the color information of the isolated points. 
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4. Texture-based shadow detection 

The principle behind the textural model is that the texture of foreground objects is different 
with that of the background, while the texture of shaded area remains the same as that of 
the background. 
In (Xu et al., 2005), several techniques have been developed to detect moving cast shadows 
in a normal indoor environment. These techniques include the generation of initial change 
detection masks and canny edge maps, the detection of shadow region by multi-frame 
integration, edge matching, conditional dilation, and post-processing (as Fig.6 illustrates). 

Fig. 6. Moving cast shadow detection by using the edge information.  

McKenna et al. (McKenna et al., 2000) assumed cast shadow results in significant change in 
intensity without much change in chromaticity. Each pixel’s chromaticity is modeled using 
its means and variances, and each background pixel’s first-order gradient is modeled by 
using gradient means and magnitude variances. The moving shadows are then classified as 
background if the chromaticity or gradient information supports their classification. Leone
et al. (Leone et al., 2006) represented textural information in terms of redundant systems of 
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functions, and the shadows are discriminated from foreground objects based on a pursuit 
scheme by using an over-complete dictionary. Matching Pursuit algorithm (MP) is used to 
represent texture as linear combination of elements of a big set of functions, and MP selects 
the best little set of atoms of 2D Gabor dictionary for features selection. Zhang et al. (Zhang 
et al., 2006) used the normalized coefficients of the orthogonal transformation for moving 
cast shadow detection. Five kind of orthogonal transforms (DCT, DFT, Haar Transform, 
SVD, and Hadamard Transform) are analyzed, and their normalized coefficients are proved 
to be illumination invariant in a small image block. The cast shadows are then detected by 
using a simple threshold on the normalized coefficients (as Fig.7 illustrates).  
Zhang et al. (Zhang et al., 2006) use the ratio edge for shadow detection, which are defined 
as follows. 

Fig. 7. Moving cast shadow detection based on the normalized coefficients of orthogonal 
transformation.

(x,y)={F(x+i,y+j)| 0<i2+j2 r2} (10) 

(i, j) : F(i, j) (x, y)
;

F(i, j)
F(x, y)R(x, y) =

∈

 (11) 

According to the illumination model in Eq. (2), the ratio edge is proved to be illumination 
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invariant. The shadow are then detected by imposeing a threshold on the ratio edge 
difference RD(x,y) defined as follows. 

B

S

2

D
B(i, j) (x,y)

(i, j) : 
F(i, j) (x, y)

- ;
B(i, j) F(i, j)

B(x, y) F(x, y)R (x, y) =
∈
∈

 (12) 

    
Fig. 8. The textural property of ratio edge.  

in which B(x,y) and S(x,y) are the neighoring region of B(x,y) and F(x,y), respectively. The 
ratio edge of Eq. (12) is given in Fig.8, it can be seen that ratio edge can represent the 
quanlity of the texture in the neighboring region.  
Fung et al. (Fung et al., 2002)  analyzed the characteristics of cast shadows in the luminance, 
chrominance, gradient density, and geometry domains, and a combined probability map is 
obtained which is called as shadow confidence score (SCS), as shown in Fig. 9.  

Fig. 9. Moving cast shadow detection based on shadow confidence score.  

From the edge map of the input image, each edge pixel is examined to determine whether it 
belongs to the vehicle region based on its neighboring SCSs. The cast shadows are identified 
as those regions with high SCSs, which are outside the convex hull of the selected vehicle’s 
edge pixels.  
Textural model may be the most promising technique for shadow detection, whereas the 
state-of-the-art of textural model are intricate in implementation. Moreover, in the 
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homogeneous regions of the images, the textural information of the scenes may be very faint 
and cannot be captured by traditional methods. 

5. Geometry-based shadow detection 

Geometric model makes use of the camera location, the ground surface, and the object 
geometry, etc., to detect the moving cast shadows.  

Fig. 10. The Gaussian geometric shadow model used for the detection of pedestrian’s 
shadow.  

In (Hsieh et al., 2003), Gaussian shadow model was proposed to detect the shadows of 
pedestrian. The model is parameterized with several features including the orientation, 
mean intensity, and center position of a shadow region (as Fig.10 illustrates), with the 
orientation and centroid position being estimated from the properties of object moments. 
Hsieh et al. (Hsieh et al., 2004; Hsieh et al., 2006) proposed a histogram-based method to 
detect different lane dividing lines from traffic video sequence. According to these lines, a 
line-based shadow modeling process is applied to eliminate the shadows of vehicles. Two 
kinds of lines are used, including the ones parallel and vertical to lane directions, which can 
be used to eliminate shadows in the different positions of vehicles. Yoneyama et al.
(Yoneyama et al., 2003; Yoneyama et al., 2005) proposed joint 2D vehicle/shadow models to 
suppress the moving shadows of vehicles. The proposed 2D vehicle/shadow models are 
classified into six types (as Fig.11 illustrates) and the parameters of these models can be 
estimated by fitting the segmented vehicles with these models.  
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Fig. 11. Six vehicle model types with the corresponding cast shadow. 

All these methods of geometric model strongly depend on the geometric relationships of the 
objects in the scenes, and when these geometric relationships change, these methods 
become ineffective. 

6. Statistical inference for shadow model 

Another useful tool for shadow detection is statistical model, which can further improve the 
performance of different shadow model. Most of these methods are based on the noise 
shadow model: 

B 2

a p

a p

F(x,y) = (x,y) (x,y) + (x,y); (x,y) ~ N(0, );
c + t(x,y) c cos(j)

     (x,y) = ; 0 (x,y) 1;
c + c cos(j)

⋅
⋅ ⋅

≤ ≤
⋅

 (13) 

in which t(x,y), cp, and ca  are ones defined in Eq. (2). 
Toth et al. (Toth et al., 2004) use the  quantity given in Eq. (14) for shadow detection, which 
is normally distributed with variance (1+1/ 2) 2.

B

B B

1 1(x,y) - F(x,y) = (x,y) - (x,y);
(x,y) (x,y)

(x,y) = (x,y) + (x,y);

⋅ ⋅

                      
 (14) 

Each moving pixel is then classified into foreground object or shadow by performing a 
significance test. Wang et al. (Wang et al., 2003) modeled the background, shadow, and edge 
information as Gaussian distributions which are updated adaptively. A Bayesian framework 
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is then utilized to describe the relationships among the segmentation label, background 
intensity, and edge information. Markov random field (MRF) is used to improve the spatial 
connectivity of the segmented regions. Nicolas et al. (Martel-Brisson, N. & Zaccarin, A., 
2005)  introduce Gaussian mixture model (GMM) for the detection of moving cast shadows. 
The proposed algorithm consists of identification the distributions that could represent 
shadows, modification the learning rates of the distributions to allow them to converge 
within the GMM, and build of a GMM for moving shadows by using identified 
distributions. Mikic et al. (Mikic et al., 2000) model the shadow pixel as a Gaussian 
distribution with  (μS,R, μS,G, μS,B, S,R, S,G, S,B) being the mean and variance, while the 
illuminated pixel is also model as a Gaussian distribution with  (μL,R, μL,G, μL,B, L,R, L,G, L,B)
being the mean and variance. Let D=diag(dR,dG,dB) being the camera response for the same 
point when it is shadowed. Therefore, we have the following relationships. 

S,R R L,R S,G G L,G S,B B L,B

S,R R L,R S,G G L,G S,B B L,B

μ = d μ ,μ = d μ ,μ = d μ ;
= d , = d , = d ; 

 (15) 
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Fig. 12. Histogram of the normalized ratio edge difference for moving cast shadows and 
foreground, and comparison with Chi-square distribution. 

The distribution of foreground objects is assumed to be uniform distribution. A maximum 
posteriori probability (MAP) is then used to classify the pixel into background(C1),
shadow(C2), and foreground(C3) according to its color vector :

i i
i

j j
j=1,2,3

p( |C ) p(C )p(C | ) = ;
p( |C ) p(C )

⋅
⋅

 (16) 

In (Zhang et al., 2006), the distribution of the normalized background difference of ratio 
edge in shaded background area is also analyzed and is approximated to be a chi-square 
distribution. Therefore, a significance test can be used for automatic shadow detection. The 
distribution of RD(x,y)  in Eq.(12) is depicted for moving shadows and foreground objects in 
Fig. 12. It can be found that ratio edge difference of moving shadows has much different 
distribution compared with that of foreground objects. The distribution of RD(x,y) of moving 
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shadows is also compared with Chi-square distribution in Fig. 12 and we can see that a 
good fitting can be reached. 

7. Conclusion 

In this chapter, we have provided a brief overview of the works about moving cast shadow 
detection. The state-of-the-art methods have been categories into color model, textural 
model, and geometric model according to the information and model utilized, which have 
been disscussed systemically. Furthermore, all kinds of statistical models have been 
employed to tackle the problem, which are also analyzed in detail. From the results, we can 
see that different method is fit for different situation and it is very hard to get a method in 
common use. Therefore, the future work may be the fusion of different information by 
statistical model to realize robust shadow detection. 
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1. Introduction 

Vision systems require fundamental algorithms of image processing and vision computing. 
Algorithms of edge detection, grouping and stereo disparity detection are typical examples. 
Marr and his collaborators proposed several effective algorithms of edge detection and 
stereo disparity detection, in particular, in a computational approach (Marr, 1982). 
Marr and Hildreth had previously proposed an edge detection algorithm (Marr and 
Hildreth, 1980), in which edge points were defined as those having a high brightness 
gradient over space. They utilized the Gaussian filter combined with the Laplacian one; the 
Gaussian filter removes noise components, and the Laplacian filter senses a brightness 
gradient. They additionally proposed an alternative algorithm that utilizes difference of two 
Gaussian filters having two different space constants of excitation and inhibition. Both of 
these two algorithms utilize the Gaussian filter; the output of the filter is equivalent to the 
solution of the diffusion equation. Their proposal highly attracted other researchers’ 
attention, resulting in the development of many edge detection algorithms starting from the 
Gaussian filter or the diffusion equation, in which, for example, anisotropy was introduced 
into the diffusion equation (Perona & Malik, 1990). 
Regarding stereo disparity detection, Marr and Poggio proposed “the cooperative 
algorithm” (Marr and Poggio, 1976; Marr et al., 1978). Stereo cameras project a target point 
located in a three-dimensional world onto two points on their left and right image planes; 
stereo disparity refers to the difference of the two points. A stereo disparity map helps to 
reconstruct the three-dimensional world and thus has many applications in vision systems. 
To construct a reliable stereo disparity map, Marr and Poggio made two important 
constraints, one of which is that spatial adjacent points on a stereo disparity map must have 
similar disparity levels. This constraint allows us to propagate disparity information in a 
spatial local area. Therefore, the cooperative algorithm for the stereo disparity detection 
utilizes an information propagation mechanism, which roughly refers to the mechanism of 
diffusion. Using this cooperative algorithm, other researchers have proposed several 
methods of stereo disparity detection (Zitnick & Kanade, 2000). 
There are several interesting approaches to image processing and vision computing not only 
in the field of computer science, but also in the natural sciences. Kuhnert et al. demonstrated 
that a chemical reaction system solves the typical image processing tasks of edge detection 
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and segmentation (Kuhnert, 1986; Kuhnert et al., 1989). The mathematical model of the 
chemical reaction system cited in their demonstration is a type of reaction-diffusion system, 
which consists of non-linear reaction terms combined with diffusion equations. Their 
successful demonstration showing the capability of the reaction-diffusion system to process 
images strongly motivated us to further develop our image processing and vision 
computing algorithms by incorporating the reaction-diffusion system. In addition, Asai and 
his collaborators have been proposing reaction-diffusion devices for image processing (Asai 
et al., 2005; Adamatzkey et al., 2005). They realized their algorithms by utilizing large-scale 
integrated circuits and applied them to realistic applications. Reaction-diffusion systems can 
be found in a variety of natural systems (Murray, 1989). The FitzHugh-Nagumo equations 
are typical reaction-diffusion equations; they simulate an information transmission 
phenomenon along a nerve axon (FitzHugh, 1961; Nagumo et al., 1962). 
This chapter presents a class of algorithms for typical image processing and vision 
computing such as edge detection, grouping and stereo disparity detection, all of which are 
fundamental functions needed for vision systems. The algorithms utilize reaction-diffusion 
equations, so we call this class of algorithms "reaction-diffusion algorithms". In particular, 
we utilize the FitzHugh-Nagumo type reaction-diffusion equations, since we are interested 
in biological systems and also in the human early visual processing mechanism. Previous 
algorithms, such as those proposed by Marr et al., utilize the Gaussian filter or a diffusion 
equation. In contrast to those algorithms, our reaction-diffusion algorithm utilizes two 
diffusion equations coupled with non-linear reaction terms. Under a certain ratio of the two 
diffusion coefficients, the non-linear reaction terms play an important role in solving the 
problem of unexpected blurring caused by simple diffusion-based algorithms. 

2. Reaction-Diffusion System 

The reaction-diffusion system with the two variables (u,v) consists of 

),(2 vufuDu ut +∇=∂ , ),(2 vugvDv vt +∇=∂ . (1) 

The operator t denotes the temporal partial derivative / t. The Laplacian operator ∇2

denotes 2/ x2+ 2/ y2 in the two-dimensional coordinate system of (x,y); Du is the diffusion 
coefficient of the variable u and Dv is that of v. The functions f(u,v) and g(u,v) are reaction 
terms, which depend on particular phenomena. The reaction terms of the FitzHugh-
Nagumo equations (FitzHugh, 1961; Nagumo et al., 1962) are 

[ ]vuauuvuf −−−
ε

= )1)((1),( , bvuvug −=),( , (2) 

where a and b are constants and ε is a positive small constant (0<ε<<1).
Let us focus on the set of the ordinary differential equations du/dt=[u(u-a)(1-u)-v]/ε and 
dv/dt=u-bv in order to understand the basic behaviour of the FitzHugh-Nagumo equations. 
The set of the equations has two different types of system behaviour, the mono-stable 
system and the bi-stable one, depending on the parameter values of a and b. For example, 
when a=0.25 and b=1.0, the system becomes mono-stable. In this case, any solution starting 
from any point on a phase plot finally converges to the stable point A, as time proceeds [see 
Figs. 1(a) and 1(b)]. When a=0.25 and b=10, solutions converge to either of the two stable 
points A or C, and that is the bi-stable system [see Figs. 1(a) and 1(c)]. The variable u is an 
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activator, and the variable v is an inhibitor. When u>a and v=0 at an initial state, because of 
du/dt>0, the variable u increases spontaneously; this is the self-activation process. After u
reaches 1.0, the variable v also begins to increase. The increasing process of the variable v
inhibits the variable u from increasing; this is the self-inhibition process. When u<a at an 
initial state, a solution directory converges to the stable point A. When starting from the 
initial condition of v=0, the system works as a time-dependent threshold function, in which 
the parameter a is its threshold value. Therefore, a set of solutions (u,v) traces a trajectory 
indicated by arrows in the mono-stable system. In the bi-stable system, a set of solutions 
starting from u>a and v=0 remains at the stable equilibrium point C. 
Let us return to the full reaction-diffusion system. When the two diffusion coefficients of the 
activator variable u and the inhibitor variable v are in the condition of Du>Dv, the reaction-
diffusion system self-organizes the temporally evolving spatial pattern which propagates in 
space. However, when the two diffusion coefficients are in the condition of Du<<Dv, the 
system self-organizes a static pattern (Turing, 1952; Kondo & Asai, 1995). By choosing 
appropriate parameter values and finite differences for the discrete version of the FitzHugh-
Nagumo type reaction-diffusion equations under Du<<Dv, we obtain spatial static patterns 
(Ebihara et al., 2003a; Nomura et al., 2003). Figure 2 shows numerical results obtained by the 
reaction-diffusion system of Eqs. (1) and (2), in which an initial condition for u has the 
binary digit of 0 or 1 randomly distributed in the centre part of the one-dimensional space x.
The mono-stable system self-organizes the two impulses standing at the edge points; that is, 
the impulses divide the one-dimensional space into the centre part and the remaining flat 
parts. The bi-stable system also divides the space into such parts. These results show that the 
reaction-diffusion system has the ability to detect edge points and segments from the binary 
data. Note that the spatial distributions shown in Figs. 2(b) and 2(c) are not transient but 
almost static. 
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Figure 1. System behaviour of the FitzHugh-Nagumo equations du/dt=[u(u-a)(1-u)-v]/ε and 
dv/dt=u-bv. (a) Phase plot for the equations. A and C are stable equilibrium points; B is an 
unstable point. (b) Temporal development of u(t) for the mono-stable system (a=0.25, b=1.0). 
(c) Temporal development of u(t) for the bi-stable system (a=0.25, b=10). Both of (b) and (c) 
show how the solutions starting from the two different initial conditions (u0=0.24 and 
u0=0.26) temporally change; the initial condition for v(t) is zero and ε=10-3 for both. 
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Figure 2. One-dimensional numerical results of the FitzHugh-Nagumo type reaction-
diffusion equations of Eqs. (1) and (2). (a) Initial condition of u(x,t=0); (b) spatial 
distributions of u(x,t=10) and v(x,t=10) for the mono-stable system with a=0.01 and b=1.0; (c) 
those for the bi-stable system with a=0.01 and b=10. The initial conditions for v in both (b) 
and (c) are v(x,t=0)=0. The other parameter values are Du=1.0, Dv=10 and ε=1.0×10-3.

3. Previous Algorithms 

Marr and his collaborators proposed algorithms for edge detection and stereo disparity 
detection. This section presents the previously proposed algorithms by Marr et al. and a 
more recently developed algorithm for stereo disparity detection. 

3.1 Edge detection 

Marr and Hildreth proposed an edge detection algorithm (Marr & Hildreth, 1980) in which 
edge points were generally defined as those having a high spatial gradient in image 
brightness distribution. Their algorithm consists of the following three steps to detect edge 
points from an image brightness distribution function denoted by I(x) in the one-
dimensional space x. The first step is to compute the convolution of the image function and 
the Gaussian function as follows: 
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σ
−

σπ
=σ 2

2

2
exp

2
1);( xxG . (3) 

The parameter σ is the constant representing spatial spread. The convolution of the image 
function and the Gaussian function reduces noise contained in the image function. Natural 
images have noisy signals, which could produce pseudo edge points. Therefore, before 
detecting edge points, by applying a Gaussian filter to the image function, we obtain its 
smoothed function: G*I(x) [see Figs. 3(a) and 3(b)], in which the symbol * denotes the 
convolution operator. The first-order derivative operator ∇ applied to G*I(x) provides the 
distribution shown in Fig. 3(c). The second-order derivative operator ∇2 for G*I(x) provides 
the spatial distribution that is across the zero level at the edge point. That is, the zero-
crossing point corresponds to the edge point. Thus, we can detect edge points by finding 
zero-crossing points in the distribution of ∇2(G*I). This is the well-known edge detection 
algorithm that utilizes the 'Laplacian of Gaussian' (LoG) filter. 
Another edge detection algorithm utilizes two Gaussian filters with different space 
constants. One of the filters has a small space constant denoted by σe, and the other has a 
large space constant denoted by σi. We can detect edge points by finding zero-crossing 
points in the output of the filter consisting of the difference of the two Gaussian filters 
(DOG). The DOG filter is expressed as 

I(x)

Edge point

x

Zero-crossing point

(a)

(b)

(c)

(d)

G*I(x)

dG*I(x)/dx

d2G*I(x)/d2x

Average level 

Figure 3. Edge detection algorithm proposed by Marr and Hildreth in the one-dimensional 
space x. (a) Image brightness distribution function I(x) and its average level on brightness; 
(b) output of the Gaussian filter applied to I(x); (c) first-order derivative of G*I(x); (d) 
second-order derivative of G*I(x). The zero-crossing point in the second derivative (d) 
corresponds to the edge point of the original I(x).
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);();(DOG ie σ−σ= xGxG . (4) 

Marr and Hildreth pointed out that the constant σi is larger than σe and the optimal ratio of 
the two constants (σe/σi) is 1.6 or 1.7. 
Let us consider the following simple diffusion equation having the spatial and temporal 
distribution function u(x,t) and the diffusion coefficient Du : 

uDu ut
2∇=∂ . (5) 

When the diffusion equation has the initial condition of a spatial function u0(x), the next 
convolution of the function u0(x) and the Gaussian function Gt(x,t;Du) becomes the solution 
of the diffusion equation at time t,

);,(*)(),( 0 ut DtxGxutxu = , (6) 

where

−
π

=
tD

x
tD

DtxG
uu

ut 4
exp

2
1);,(

2
. (7) 

Therefore, when the diffusion equation has the initial condition of an image function I(x), it 
provides the solution equivalent to the Gaussian filter output for the image function. If an 
image pool stores the solution u(x,t) of the diffusion equation during a short time Δt, edge 
points are detected from zero-crossing points in [u(x,t-Δt)-u(x,t)] (Sunayama et al., 2000) 
derived from the simple diffusion equation of Eq. (5), since the space constant of the 
Gaussian function described in Eq. (7) depends on time t. Another algorithm for edge 
detection utilizes the next two simple diffusion equations having the two variables (u,v) and 
the initial conditions of u(x,t=0)=v(x,t=0)=I(x). Under the condition of Du<Dv, zero-crossing 
points in the difference distribution (u-v) correspond to edge points. 

uDu ut
2∇=∂ , vDv vt

2∇=∂  (8) 

3.2 Stereo disparity detection 

Figure 4 shows the arrangement of stereo cameras and an object in a three-dimensional 
world, and a basic idea for stereo disparity detection. The left camera projects the object 
point onto a position (xL,y) on its image plane IL(x,y); the right one does it onto (xR,y) on 
IR(x,y). The difference between the two positions is the stereo disparity d=xL-xR, which can 
be used to obtain the depth of the object (Gonzalez & Woods, 1992). If we can find the 
correspondence between the two points (xR,y) and (xL,y) from only the two image brightness 
distribution functions IL(x,y) and IR(x,y), we can obtain the stereo disparity, that is, the depth 
of the object point. To find the stereo correspondence, we overlap the two image 
distributions IL(x,y) and IR(x,y) at every possible disparity level d in Ψd={d0,d1,…,dN-1}, in 
which N denotes the number of possible disparity levels. If the object has a disparity level d,
a cross-correlation map Cd(x,y) computed for IL(x,y) and IR(x+d,y) has a high correlation 
value nearly equal to 1.0 at the object position. By finding the highest value of Cd(x,y) for all 
of the possible disparity levels, we can obtain a disparity map. 
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Figure 4. Stereo vision geometry and a cross-correlation map. (a) Stereo cameras and an 
object in a three-dimensional world. An object point is projected onto the image plane IL(x,y)
of the left camera and onto the image plane IR(x,y) of the right one. (b) Stereo images 
overlapped with a stereo disparity level d. (c) Cross-correlation map Cd(x,y) obtained 
between the stereo images with a disparity level d. When d=xL-xR, Cd becomes 1. 

Following the above idea of detecting a stereo disparity map, we first compute a cross-
correlation map Cd(x,y) between stereo images. For a binary stereo image pair such as the 
random-dot stereograms (Julesz, 1960), a simple logic operation provides the cross-
correlation map as 

)],(),([),( RL ydxIyxIyxCd +⊕¬= , (9) 

where ¬[⋅⊕⋅] is the XNOR logic operation that gives 1 for a matched pair and 0 for an 
unmatched one (Nomura et al., 1999). For real stereo images, the normalized cross-
correlation function computed in a spatial local area LS , 
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provides similarity between the stereo images, where sL denotes the standard deviation of IL

in LS surrounding the point (x,y) and sR denotes the standard deviation of IR in LS

surrounding (x+d,y); LI  and RI  are the averages of IL and IR in LS as shown in 
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where
SLN  is the number of points in LS. The cross-correlation map Cd(x,y) is provided for 

use in the next main step of stereo disparity detection. Several stereo algorithms utilize other 
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types of similarity measures such as the sum of absolute differences (SAD) between stereo 
images (Brown et al., 2003). 
It is difficult to solve the stereo correspondence problem using only the cross-correlation 
map. The cross-correlation value Cd becomes 1 for a matched pair between stereo images. 
However, in real situations, images have many similar brightness patterns, which cause 
many miss matched pairs in Cd(x,y). Therefore, there is much uncertainty in finding correct 
match pairs in the cross-correlation map. To solve the uncertainty and detect a reliable 
stereo disparity map, we need additional information or constraint, as described next. 

Marr and Poggio proposed a cooperative stereo algorithm. They imposed two important 
constraints on stereo disparity distribution, a continuity constraint and a uniqueness 
constraint. The continuity constraint states that the stereo disparity distribution varies 
smoothly over a stereo disparity map or in a local spatial area called “local support”. This is 
generally true except for object boundaries. The other uniqueness constraint states that a 
point on a stereo disparity map has only one disparity level. This is also true except for a 
transparent object. According to these two constraints and the biologically motivated idea of 
a cell network, they formulated the next update function for the cell state ),( yxSt

d  of the 
disparity level d and the position (x,y) at the t-th iteration step, as follows: 
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In Eq. (12), σ(S,T) denotes the threshold function, in which the parameter T is the threshold 
value for S. When S<T, σ(S,T) provides zero; when S T, it provides 1. The symbol Ωe

denotes the spatial local support area for the continuity constraint, and Ωi denotes the 
inhibition area for the uniqueness constraint [see Fig. 1 in the article (Zitnick and Kanade, 
2000)]. The parameter λ is a positive inhibition constant. After iterations needed for 
convergence of the update function of Eq. (12), we obtain the disparity map M(x,y,t) at the t-
th step by finding the maximum value of ),( yxSt

d  for all of the possible disparity levels at a 
particular position (x,y), 

 ),(maxarg),,( yxStyxM t
d

d dΨ∈
= . (13) 

The original cooperative algorithm works well for random-dot stereograms. However, the 
algorithm does not work for real stereo images. 
Zitnick and Kanade improved the cooperative algorithm (Zitnick & Kanade, 2000). Their 
algorithm achieves good performance not only for random-dot stereograms but also for real 
stereo images, compared with the original cooperative algorithm. In addition, their 
algorithm can detect an occlusion area, which was not taken into account by the original 
cooperative algorithm. The update function proposed by Zitnick and Kanade is 
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where α is a constant for convergence of the update function, and t
dR  is 
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The algorithm finally detects the disparity map, including the occlusion area, by 

≥
=
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If the maximum value of t
dS  at the point (x,y) is less than T, the algorithm classifies the point 

(x,y) as the occlusion denoted by d . The threshold value T 0 switches off the algorithm of 
the occlusion area detection. 

4. Reaction-Diffusion Algorithm 

This section presents the reaction-diffusion algorithm for edge detection, grouping and 
stereo disparity detection by means of the FitzHugh-Nagumo type reaction-diffusion system 
presented in section 2. The reaction-diffusion system consists of partial-differential 
equations; thus, this section additionally presents numerical schemes required for the 
computation of the equations. 

4.1 Edge detection 

The one-dimensional numerical result of Fig. 2(b) lets us recognize that the FitzHugh-
Nagumo type reaction-diffusion system has the ability of edge detection. It self-organizes 
impulses at edge points, if the initial condition is binary data. To utilize the edge detection 
algorithm on multi-valued image, we modify the FitzHugh-Nagumo equations. Let us recall 
the situation of Fig. 3 showing the original image brightness distribution I(x,y) and its 
average brightness level. The image brightness distribution I(x,y) is across its average level 
at the edge position. In Eq. (2), the parameter value a is the threshold value for the initial 
condition, as stated in the description for the ordinary differential equation and also as 
shown in Fig. 1. Therefore, when substituting the average level of I(x,y) for the parameter 
value a of the FitzHugh-Nagumo equations, we can expect to realize the edge detection 
function. A simple diffusion equation provides a local average value of an initial condition 
and its local area is spreading as time proceeds. Thus, we estimate the average level or the 
threshold level of a with an additional diffusion equation starting from the initial condition 
of I(x,y). The overall set of equations for edge detection in the reaction-diffusion algorithm is 
the following: 

 ),,(2 avufuDu ut +∇=∂ , ),(2 vugvDv vt +∇=∂ , aDa at
2∇=∂ , (17) 

[ ]vuauuavuf −−−
ε

= )1)((1),,( , bvuvug −=),( . (18) 

Note that Eq. (17) handles the parameter a as a spatial and temporal variable a=a(x,y,t), as 
opposed to the constant parameter a of the original FitzHugh-Nagumo equations. The 
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diffusion coefficients Du, Dv and Da should satisfy the relation Du<<Dv<<Da. The Turing-like 
condition Du<<Dv is from section 2, and the condition Dv<<Da is for the computation of the 
local average level. Initial conditions for (u,v,a) are given as 

),()0,,()0,,( 0 yxIatyxatyxu ×==== , 0)0,,( ==tyxv , (19) 

where I(x,y) is a normalized image brightness distribution ranging from 0 to 1; a0 is a 
constant. The Neumann boundary condition governs the four sides of the rectangular image 
region of u, v and a such as 

0RightLeft, =∂ ux , 0
BottomTop,

=∂ uy . (20) 

4.2 Grouping 

The human vision system has a grouping mechanism for processing visual stimuli. For 
example, when the system is exposed to the visual stimulus of an image that consists of 
several different features such as orientation, it will perceive several groups corresponding 
to particular orientation features (Beck, 1966). That is, for example, the human vision system 
can reconstruct the group map of Fig. 5(a) from the visual stimulus of Fig. 5(b). This is the 
grouping mechanism. We believe that the grouping mechanism underlies several human 
visual functions such as stereo disparity detection. 
In accordance with the reaction-diffusion algorithm, we present a model that can reconstruct 
a grouping map from a visual stimulus. Figure 6 shows the overall flow diagram of visual 
processing for the grouping mechanism (Nomura et al., 2004). During the first stage, several 
orientation-selective filters detect the orientation feature distributions sn(x,y) from the input 
image I(x,y) of a visual stimulus. For example, Fig. 7 shows the outputs sn (n=0,1,2) of the 
three different orientation-selective filters applied to the input image of Fig. 5(b). Then, 
during the next stage, the distributions sn(x,y) are fed to the multi-sets of reaction-diffusion 
equations; each set has the two variables (un,vn) and is slightly modified from the original 
FitzHugh-Nagumo equations. As time proceeds, the multi-sets of equations spontaneously 
self-organize groups of orientation features. Finally, the algorithm reconstructs a group map 
from the solutions un. Note that the multi-sets of the reaction-diffusion equations are 
mutually and inhibitedly linked through the activator variables un.

(a) (b)

Figure 5. Group map and visual stimulus for the explanation of the grouping mechanism in 
the human vision system. (a) Original group map with three groups. (b) Visual stimulus 
having the three different features of line orientation. The image size is 400×400 pixels. 
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Figure 6. Flow diagram of the grouping mechanism. From the input image I(x,y),
orientation-selective filters provide feature distributions sn(x,y) for n∈{0,1,…,N-1}, in which 
N denotes the number of groups. The distributions are fed to the multi-sets of the reaction-
diffusion equations having the two variables (un,vn). Integration of un provides a group map 
M(x,y,t).

(a) (b) (c) 
Figure 7. Outputs of three orientation-selection filters. Black dots indicate the existence of 
orientation features of (a) /4, (b) 2 /4 and (c) 3 /4. The filters are realized with a matching 
procedure between an input image and a template pattern of an oriented short line. 
To model the grouping mechanism we must consider two important constraints. One of 
them is that a particular point on an image is a member of only one group and is not 
classified into two or more groups; that is the uniqueness constraint. The other constraint is 
that spatial adjacent points are likely to be members of the same group; that is the continuity 
constraint. A particular point except for boundary areas of groups should satisfy these two 
constraints. By recalling that the parameter a is the threshold value, we formulate the set of 
equations governing the n-th group as follows: 

nnnnnunt sUvufuDu μ++∇=∂ ),,(2 , ),(2
nnnvnt vugvDv +∇=∂ , (21) 

[ ]nnnnnnnn vuUauuUvuf −−−
ε

= )1))(((1),,( , nnnn bvuvug −=),( , (22) 
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where μ is a constant. The original reaction term f(u,v) has a constant parameter a. In 
contrast to this, the modified version of the reaction term in Eq. (22) depends on the state of 
another set Un, as follows: 

nn UaUa += 0)( , ),,(max '}1,,1,1,,1,0{'
tyxuU nNnnnn −+−∈

= , (23) 

where a0 is a constant and N is the number of groups. Let us consider the situation in which 
the variable un’(x,y) of the n’-th group becomes large. This represents that the point (x,y) is 
already classified as the n’-th group. In that case, the n-th set must be inhibited to have a 
high value of un. Equation (23) works as the mutual inhibition mechanism by increasing the 
threshold value of other sets, and the multi-sets of equations exclusively become the excited 
state having the high value of un. Thus, Eq. (23) realizes the uniqueness constraint. The 
continuity constraint is built into the reaction-diffusion system, since the system originally 
has the spatial information propagation effect for its adjacent area. After convergence, the 
final step is to reconstruct a group map M(x,y,t) by finding the maximum value of un at a 
particular point at time t as follows: 

 ),,(maxarg),,(
}1,,1,0{

tyxutyxM n
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= . (24) 

4.3 Stereo disparity detection

The previous cooperative algorithm proposed by Marr and Poggio has the uniqueness 
constraint and the continuity constraint, both of which are very similar to the constraints 
made by the reaction-diffusion algorithm modelling the grouping mechanism. Thus, we can 
expect that the reaction-diffusion algorithm described with Eqs. (21) and (22) is also 
applicable to the stereo disparity detection; a cross-correlation map Cd(x,y) obtained by Eq. 
(9) or Eq. (10) substitutes for sn(x,y) in Eq. (21), and the disparity level d corresponds to the 
number n (Nomura et al., 2005). The local support area in the stereo disparity detection is 
not only over space but also across the disparity direction, as proposed by Zitnick and 
Kanade. Thus, it is necessary to modify the function a(Ud) in Eq. (23) representing the 
uniqueness constraint, by taking into account the distance between the current disparity 
level d and the level having the largest value of ud’ in the inhibition area Ωi. One possible 
formulation having the two constants of a0 and a1, and the switching function tanh(⋅) is 

( )[ ]10 tanh1
2
1)( adUaUa dd −+×+= , ),','(max ')',','( i

tyxuU ddyxd Ω∈
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)',','( i

tyxudd d
dyx Ω∈

−= . (25) 

Finally, Eq. (24) provides a stereo disparity map M(x,y,t), in the same manner. 

4.4 Numerical computation for reaction-diffusion equations 

The realization of the reaction-diffusion algorithm on a computer system requires numerical 
computation of partial differential equations. The finite difference method is applicable to 
the computation. For example, the partial derivatives tu, xu and yu at (x,y,t) are 
approximately evaluated with the finite differences of δt, δx and δy in time and two-
dimensional space as 
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where k
jiu ,  denotes u(iδx,jδy,kδt) in the discrete coordinate system. The first terms on the 

right side of Eqs. (27) and (28) are the implicit terms evaluated at (k+1), and the second 
terms are the explicit terms evaluated at k. The parameter h denotes a ratio between the 
explicit term and the implicit one in each of the equations; when h=0.5, the system of Eqs. 
(26)-(28) becomes the Crank-Nicolson scheme (Press et al., 1988). Thus, the discrete version 
of Eq. (1) becomes 
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where

2/ xtDD uux δδ= , 2/ ytDD uuy δδ= . (30) 

By applying Eq. (29) to a particular point on an  image, we obtain a set of linear equations. 
For example, the Gauss-Seidel method iteratively solves the set of equations (Press et al., 
1988).
The previous study done by the authors and their collaborators implies that the choices of 
the spatial finite differences are very important, and it suggested that rather large finite 
differences would be better for the edge detection algorithm (Ebihara et al., 2003a). 

5. Experimental Results 

This section presents experimental results for the performance comparison of the reaction-
diffusion algorithm and other competitive algorithms for edge detection, grouping and 
stereo disparity detection. Table 1 summarizes the algorithms, their parameter values 
utilized here and references to the results. 
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 Algorithm and model equation(s) Parameter values Results 

Reaction-diffusion algorithm: 
Eqs. (17)-(19) 

δx=δy=1/2, δt=1/1000, 
Du=1.0, Dv=5.0, Da=100,

a0=0.25, b=1.0, ε=10-3Edge 
detection 

DOG filter realized with two 
diffusion equations: Eq. (8) 

δx=δy=1/2, δt=1/1000, 
Du=1.0, Dv=2.56 

Fig. 8 

Reaction-diffusion algorithm: 
Eqs. (21)-(24) 

δx=δy=1/10, δt=1/1000,
Du=1.0, Dv=3.0 or 1.0, 

a0=0.15, b=10, ε=10-2,μ=100
Grouping 

Single diffusion algorithm: 
Eqs. (21), (24) with f(un,vn,Un)=0 

δx=δy=1/10, δt=1/1000,
Du=1.0, μ=100

Figs. 9,10 
Table 2 

Reaction-diffusion algorithm: 
Eqs. (21), (22), (24), (25) 

δx=δy=1/5, δt=1/100,
Du=1.0, Dv=3.0, a0=0.13, 

a1=1.5, b=10, ε=10-2, μ=3.0 Stereo
disparity 
detection 

Cooperative algorithm: 
Eqs. (14)-(16) 

α=2.0, T=0, Ωe=5×5×3,
Cd=0.08 if Cd<0.08 

Figs. 11-13 
Table 3 

Table 1. Algorithms, their parameter values utilized in the experiments and references to 
the figures and tables showing their results. The ratio h needed for the finite difference 
method was fixed at h=0.5. For stereo disparity detection, both the reaction-diffusion 
algorithm and the cooperative algorithm utilize a cross-correlation map Cd(x,y) evaluated by 
Eq. (10), in which the spatial local area LS consists of the target point and its 4 nearest points, 
that is, LS={(x,y)|(0,0),(1,0),(0,1),(-1,0),(0,-1)}. Neither of the stereo algorithms has sub-pixel 
accuracy on disparity. The authors realized the computer programs of all the algorithms 
including the competitive ones by themselves. 

5.1 Edge detection 

Figure 8 shows edge detection results obtained for an image of the outdoor scene shown in 
Fig. 8(a). Figure 8(b) shows the distribution u(x,y,t=10) obtained by the reaction-diffusion 
algorithm; this distribution directly expresses edge points. Figure 8(c) shows the difference 
of the two solutions u and v governed by the two diffusion equations having small and large 
diffusion coefficients (Du<Dv) ; the difference corresponds to that of the DOG filter proposed 
by Marr and Hildreth [see Eq. (8) and section 3]. The zero-crossing points in Fig. 8(c) 
correspond to the edge points as shown in Fig. 8(d). The reaction-diffusion algorithm detects 
and preserves sharp corners, in contrast to the DOG filter. This is the main feature of the 
reaction-diffusion algorithm applied to edge detection. 
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(a)     (b) 

(c)     (d) 
Figure 8. Results of edge detection for a real image. (a) Original image, 450×340 pixels and 
256 brightness levels. (b) Solution u(x,y,t=10) obtained by the reaction-diffusion algorithm. 
(c) Difference of two solutions [u(x,y,t=1.0)-v(x,y,t=1.0)] in Eq. (8). (d) Zero-crossing points 
obtained from (c). White lines and dots correspond to edge points in (b) and (d). See Table 1 
for the algorithms and parameter values utilized here.  

5.2 Grouping 

The reaction-diffusion algorithm and its competitive single diffusion algorithm were 
applied to the filter outputs in Fig. 7 derived from Fig. 5(b). Figure 9(a) shows the result of 
the reaction-diffusion algorithm having the large inhibitory diffusion coefficient Dv=3.0; Fig. 
9(b) shows the result with Dv=1.0 being equal to Du. For comparison, Fig. 9(c) shows the 
result obtained by the single diffusion algorithm, which is derived from the reaction-
diffusion algorithm with f(un,vn,Un)=0 in Eq. (21). The next error measure evaluates the 
difference between the true group map Mt(x,y) and an obtained one Mc(x,y,t): 

( ) ( ) ( )( )
( )

1001.0ct ×−=
∈Fyx,F

,ty,x,Myx,M
N
1tE σ  (%) (31) 

The set F contains all of the points on an image plane, and NF is the number of points in F.
Figure 10 and Table 2 show the results of error evaluation for the algorithms. These results 
show the similar minimum errors (Table 2). The single diffusion algorithm achieves the 
minimum error at t=0.4; however, after that, the error is rapidly increasing monotonically. 
The reaction-diffusion algorithm with Dv=3.0 achieves the best evaluation of the minimum 
error at t=1.6. After that, the error is slightly increasing and finally it converges with good 
evaluation. The result using the reaction-diffusion algorithm with Dv=3.0 is better than that 
with Dv=1.0. 
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(a)     (b)   (c) 
Figure 9. Results of grouping obtained by the reaction-diffusion algorithm with (a) Dv=3.0 at 
t=1.6, (b) Dv=1.0 at t=1.1 and (c) by the single diffusion algorithm at t=0.4. See Table 1 for the 
algorithms and parameter values utilized here. Figure 5 shows the original image of the 
visual stimulus, and Fig. 7 shows the outputs of orientation-selective filters. 
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(b)

(a)
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Figure 10. Temporal error changes evaluated for the results of the grouping process by the 
error measure E(t) of Eq. (31). (a) Reaction-diffusion algorithm with Dv=3.0; (b) reaction-
diffusion algorithm with Dv=1.0; (c) single diffusion algorithm. See Table 1 for the 
algorithms and parameter values. See Fig. 9 for the group maps at the minimum error. 

Reaction-diffusion algorithm 
Algorithm 

Dv=3.0 Dv=1.0

Single diffusion 
algorithm

Minimum error E(t=1.6)=3.05 (%) E(t=1.1)=3.19 (%) E(t=0.4)=3.12 (%) 

Final error E(t=50) =3.48 (%) E(t=50) =3.89 (%) E(t=50) =23.9 (%) 

Table 2. Error comparison among the results of the reaction-diffusion algorithm and the 
single diffusion algorithm by the error measure E(t) of Eq. (31). See Table 1 for the 
algorithms and their parameter values and Fig. 9 for the group maps at the minimum error. 

5.3 Stereo disparity detection 

The reaction-diffusion algorithm and the previous cooperative algorithm proposed by 
Zitnick and Kanade were applied to the well-known stereo images of TSUKUBA and 
VENUS for performance evaluation of stereo algorithms. Both the image pairs and their true 
disparity maps are available via the website http://www.middlebury.edu/stereo. Figures 
11 and 12 show the stereo images, the true disparity map, a cross-correlation map and 
disparity maps obtained by the two algorithms. 
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Two kinds of error measures, ERMS and EBMP (Scharstein and Szeliski, 2002) evaluate the 
obtained disparity maps. The error measure ERMS evaluates the root-mean-square error for 
an obtained stereo disparity map, as follows: 
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The set F¬O contains all of the points detected on an image plane except for the occlusion 
area and border; 

O¬FN  is the number of points in F¬O. Thus, the error measure evaluates how 
much an obtained disparity map Mc(x,y,t) differs from the true one Mt(x,y). The error 
measure EBMP evaluates the ratio of the number of correct match points to that of detected 
points

O¬FN , as follows: 
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The parameter δd denotes the threshold value for the judgement of bad match or a correct 
one; it was fixed at δd=1.0 pixel throughout the present experiments. 

(a) (b) (c) 

(d) (e) (f) 
Figure 11. Stereo disparity detection for the image pair of TSUKUBA. (a) Left and (b) right 
images and (c) true disparity map Mt(x,y). The image size is 384×288 pixels, and possible 
disparity levels are d={0,1,…,15} pixels. (d) Cross-correlation map Cd(x,y) at the disparity 
level d=11 pixels. Disparity maps Mc(x,y,t) obtained by (e) the reaction-diffusion algorithm 
at t=50 and (f) the cooperative algorithm at t=100. See Table 1 for the algorithms and 
parameter values utilized here. The stereo image pair is available via the website 
http://www.middlebury.edu/stereo (Scharstein and Szeliski, 2002). 
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(a) (b) (c) 

(d) (e) (f) 
Figure 12. Stereo disparity detection for the image pair of VENUS. (a) Left and (b) right 
images and (c) true disparity map Mt(x,y). The image size is 434×383 pixels, and possible 
disparity levels are d={0,1,···,19} pixels. (d) Cross-correlation map Cd(x,y) obtained at the 
disparity level d=12 pixels. Disparity maps Mc(x,y,t) obtained by (e) the reaction-diffusion 
algorithm at t=50 and (f) the cooperative algorithm at t=100. See Table 1 for the algorithms 
and parameter values utilized here. The stereo image pair is available via the website 
http://www.middlebury.edu/stereo (Scharstein and Szeliski, 2002). 
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Figure 13. Temporal error changes evaluated for the disparity maps obtained by the 
reaction-diffusion algorithm. The bad-match-percentage error measure EBMP of Eq. (33) was 
applied to the disparity maps detected from (a) TSUKUBA (Fig. 11) and (b) VENUS (Fig. 12). 

Algorithm Reaction-diffusion algorithm Cooperative algorithm 

TSUKUBA ERMS=1.23 (pixel) EBMP=3.89 (%) ERMS=1.09 (pixel) EBMP=3.60 (%) 

VENUS ERMS=0.677 
(pixel) EBMP=1.54 (%) ERMS=0.691 

(pixel) EBMP=4.32 (%) 

Table 3. Performance comparison between the reaction-diffusion algorithm and the previous 
cooperative algorithm for the stereo image pairs of TSUKUBA and VENUS. See Table 1 for 
the algorithms and parameter values, and Figs. 11 and 12 for the disparity maps. See Eq. (32) 
for the error measure ERMS and Eq. (33) for EBMP.
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Figure 13 shows the temporal changes of the bad-match-percentage error measure EBMP for 
the results of the reaction-diffusion algorithm. The temporal changes show the convergence 
of the reaction-diffusion algorithm. In addition, for quantitative comparison, Table 3 shows 
the error measures evaluated for the results of the two algorithms. From these results, we 
see that the reaction-diffusion algorithm achieves good performance in the detection of 
stereo disparity. 

6. Conclusion 

This chapter presented the reaction-diffusion algorithm for vision systems. After a brief 
explanation of the reaction-diffusion system, we presented a class of algorithms for edge 
detection, grouping and stereo disparity detection by utilizing the FitzHugh-Nagumo type 
reaction-diffusion equations; all of the algorithms are necessary for the realization of vision 
systems. Previous algorithms, in particular, those proposed by Marr and his collaborators, 
utilize the Gaussian filter; the output of the filter is equivalent to the solution of the diffusion 
equation. In contrast to this, the reaction-diffusion algorithm has non-linear reaction terms 
coupled with diffusion equations. The non-linearity of the algorithm and the Turing-like 
condition can help to achieve good performance in edge detection, grouping and stereo 
disparity detection. Recently, the authors found a key mechanism in the stochastic 
resonance for performance improvement (Ebihara et al., 2003b). Thus, we conclude this 
chapter by noticing that further performance improvement will be possible with the use of 
the stochastic resonance in the reaction-diffusion algorithm. 
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1. Introduction 

Segmentation is the partitioning of an image into multiple regions (sets of pixels) according 
to a given criterion. The goal of segmentation is typically to locate objects of interest within 
the image. A wide variety of methods and algorithms are available to deal with the problem 
of the segmentation of images (Fu and Mui, 1981; Haralick and Shapiro, 1985; Pal and Pal, 
1993). These methods can be broadly classified into four categories (Zhu and Yuille, 1996): 

• Edge-based techniques. 
• Region-based techniques. 
• Deformable models. 
• Global optimization approaches. 

The edge-based techniques are based on information about the boundaries of the image. 
Therefore, they try to locate the points in which abrupt changes occur in the levels of some 
property of the image, typically brightness (Canny, 1986; Rosenfeld and Kak, 1982). On the 
other hand, those methods that use spatial information of the image (e.g. color or texture) to 
produce the segmented image fit into the region-based techniques (Chen et al., 1992; Sahoo 
et al., 1988). These methods depend on the consistency of some relevant property in the 
different regions of the image. The deformable models are based on curves or surfaces 
defined within an image that moves due to the influence of certain forces. They can be 
classified into various groups, principally snakes, deformable templates and active contours 
(Blake and Isard, 1998; Kass et al., 1988). All of these techniques avoid the use of a global 
criterion when segmenting the image, which is contrary to the global optimization 
approaches (Geman and Geman, 1984; Kanungo et al., 1994). 
In this work a unified framework for image segmentation is proposed. The technique 
consists of two stages: a parallel seeded region growing algorithm (PSRG) and a region 
merging heuristic (RM). In Figure 1 the functional scheme of the proposed algorithm is 
shown. In the first step, different segmentations, performed in parallel, of the same input 
image are obtained. Each of these segmentations, which from now on will be called partial 
segmentations, are also generated in parallel using different number of processors. This way, 
the region growing algorithm uses a two level parallelism. Next, a region merging heuristic 
is applied to the oversegmented image created as result of combining the different initial 
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segmentations. The merging process is guided using only information about the behavior of 
each pixel in the initial segmentations (without external parameters). In order to guide the 
merging stage we introduce a magnitude called repulsing force between neighboring 
regions that measures the tendency of them to remain separated in the oversegmented 
image. In order to stop the merging process an evaluation function of the segmented images 
was used. In addition the algorithm has been validated using several real images with 
different sizes and characteristics, and it has been tested on a HP Superdome cluster. 

Fig. 1. Scheme of the proposed segmentation algorithm 

2. Parallel Seeded Region Growing (PSRG) algorithm 

Our proposal was inspired by the region growing algorithm introduced by Mehnert and 
Jackway (1997), referred as SRG (Seeded Region Growing algorithm) from now on. One of 
the main benefits of this algorithm is that it solves the dependencies imposed by the 
previous proposal by Adams and Bischof (1994) in the order to access the pixels in the 
image.
The SRG algorithm starts with a set of pixels in the image to be segmented, called seeds. 
These seeds are the starting point to determine the regions in the image. Pixels that are 
neighbor of the seeds are candidates to be included in the corresponding region. Some 
established similarity criterion is used to decide which of them are finally added to the 
corresponding region.  This process is repeated sequentially in an incremental way, and the 
regions begin to “grow”. In each iteration, the pixels that are candidates to be included in at 
least one region are stored in a Neighbour Holding Queue (NHQ). In this algorithm, the 
similarity δ between these pixels and its neighbour region is defined as the difference 
between the grey intensity of the pixel and the average value of intensities of the pixels that 
currently define the region. 
In the SRG algorithm, the candidates are stored in a list of LIFO queues defined by 
consecutive and disjoint intervals of similarity, in such a way that pixels in the i-th queue 
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are those that present similarities in the interval [δimin,δimax]. Queues are ordered according 
to δimin, defining an ascending Priority Queue (PQ). In each iteration, only pixels in the First 
Queue (FQ), that is the queue with lowest δimin, are considered, and in the SRG algorithm, all 
of them are immediately assigned to the corresponding region. 
To avoid dependencies in the SRG algorithm, the average intensities of the regions are not 
updated in each assignment. Only after all the pixels in the FQ are assigned, this average is 
updated. Note that at this point new pixels can be included in the NHQ as well as in the PQ 
queues.

2.1. Implementation of the parallel algorithm 

The proposal of a parallel algorithm based on the RGS is referred as PSRG (Parallel Seeded 
Region Growing algorithm). The main idea behind this proposal is to assign a different set 
of seeds or regions to each process, in such a way that the corresponding regions grow 
independently. Each process works with a subset of the regions. Regions assigned to a 
particular process are called local. The growing process in the regions of each process is not 
completely independent of the rest, but each process must take into account the state of the 
regions assigned to the remaining processes. Note that with this approach, the segmentation 
could not be the same as in the sequential case, and that it depends on the distribution of 
regions among processes. 
In our approach, we consider second order neighbourhood for the pixels (Wang and Wang, 
2004), however the algorithm can be adapted to any other case. The implementation of the 
parallel code uses the standard Message Passing Interface (MPI) library (Gropp et al., 1994). 
The main stages of the whole algorithm are described next. 

2.1.1. Initial distribution of seeds

This stage can be considered as a preprocessing routine. Apart from initialling the 
parameters and variables, i.e. the position of the seeds, its main objective is to distribute the 
seeds (regions) among the available processes. As we will see in next stages, this distribution 
is important because the number of overlaps directly depends on it. Overlaps are the pixels 
that are simultaneously assigned to different regions. Note that regions in the same process 
can not produce overlaps. Therefore, in order to reduce overlaps, regions that are going to 
be neighbours must be assigned to the same process. This situation can not be foreseen, but 
in many cases a good approach can be obtained if we consider the distance among seeds, in 
such a way that seeds that are near to each other have a large probability of producing 
neighboring regions. We used a version of the Prim´s algorithm (Gibbons, 1984) on the 
position of the seeds in the image to reorder and distribute the regions. In addition, the 
regions are equally distributed among processes to achieve good load balance. 

2.1.2. Parallel Region Growing 

In this stage the SRG algorithm is applied to the set of regions in each process with the 
addition of two types of communications among processes: one to detect overlaps, and 
other to control the growing speed to avoid artificial growing of some regions. Two 
parameters T1 and T2 are introduced to determine the interval between pairs of 
communications of each type in terms of number of iterations of the SRG algorithm. This 
stage is referred as PRG algorithm. Next, both types of communications are introduced with 
detail. 
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2.1.2.1. Communications to detect and solve overlaps

After T1 iterations a new communication to deal with overlaps is performed. For each 
process the objective is to know the pixels already assigned by other processes. Therefore, 
overlaps (pixels assigned to different regions in different processes) among regions are 
detected. These pixels are labelled as borderline pixels, and their neighbours are not  
considered as candidates in the following iterations. 
This communication can be efficiently implemented by a reduction operation. Each 
processor labels the pixels already assigned to any local region as 1, and labels 0 the rest of 
them. After the reduction (summation) of the labels among processors for the whole image, 
the pixels with labels higher that 1 are considered overlaps. Note that only two bits are 
needed to label the pixels. 
The number of iterations between communications is a parameter that affects the 
performance of the parallel code. We propose to consider as a initial value a estimation of 
the number of pixels to be processes before the first overlap: 

min1 D
R
NT ⋅=  (1) 

Where R is the number of regions, P is the number of processors and Dmin is the minimum 
euclidean distance in number of pixels among seeds assigned to different processes. 

After this first value, T1 changes dynamically according to the number of pixels detected as 
overlaps in the previous communication. We propose to use the values given by: 

K
T1 Δ

β⋅α=  (2) 

Where α is a parameter that characterizes the cost of the communications in the particular 
system,  β is the agreeable maximum number of pixels in the overlap areas between pairs of 
communications (this parameter can be tuned by the user), and K is the number of new 
overlap pixels since the previous communication. 

2.1.2.2. Communications to control the growing speed 

In our parallel algorithm, each process has its own PQ and FQ, and the values of similarity 
they consider in a particular iteration can highly differ from one process to another. 
Therefore it is necessary to include some action to avoid unfair grows produced by local FQs 
with lower values of δ than in other FQs. 
To deal with this problem, we propose to use a reduction operation to evaluate de 
maximum and minimum values of δ used in the FQs, δmax and δmin respectively. In such a 
way that a new parameter φ is defined to specify the agreeable interval of similarities to be 
processed in each iteration given by the size L: 

10)(L minmax ≤φ≤φδ−δ=  (3) 

Therefore, if the similarity of a particular pixel in a local PQ is lesser than δmin + L, then it is 
processed, otherwise it is not assigned to the associated region. The number of iterations 
between reductions is defined by T2 (established by the user). Note that this communication 
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presents a lower cost that the previous one, because it involves just two values instead of 
information about all the pixels in the image. 

2.1.3. Redistribution of seeds 

In this stage, a new distribution of regions among processes is performed in order to assign 
overlap pixels to regions. The objective is to minimize the number of overlap pixels after the 
execution of the PRG algorithm. This new distribution just involves the overlap area of the 
image. This stage consists of three steps: 

1. Finding overlap pixels. 
2. Obtaining the new redistribution of regions among processes. 
3. Finding the optimum number of processes needed and establishing 

communications to perform the redistribution. 
The idea behind this stage is to assign those regions that share overlap pixels to the same 
process, in such a way that a new execution of PRG can assign these pixels locally. Next we 
analyze the above three steps with more detail. 
After the PRG algorithm was executed, each process has a number of regions defined by a 
set of pixels, and no other process has these pixels assigned to any of its regions. In fact, all 
these regions are limited by a border line defined by the overlap pixels or the frame of the 
image. So, a reduction operation involving all the processes is carried out. The objective of 
these communications is every process to know the overlap pixels and the regions that have 
them as part of its borderline. 
Two regions are said to be close to each other if both have as neighbour at least one overlap 
area. In this step close regions are detected by a parallel flooding algorithm. As a result of 
this, a so called adjancency matrix M is obtained. This matrix is defines as: M[i][j]=0 if 
regions i and j are not close to each other, and M[i][j]=1 otherwise. Note that M is a 
symmetric matrix. Then, the Cuthill-McKee algorithm (Saad, 1996) is applied to reorder the 
matrix in such a way that the nonzero entries are moved near the diagonal. Figure 2 shows 
the effect of applying this algorithm. This reordered matrix can be partitioned into 
contiguous blocks that are distributed among the processes. The result of this distribution is 
that groups of close regions are asigned to the same process. 

(a)    (b) 

Fig. 2. (a) Original adjacency matrix, (b) reordered matrix using the Cuthill-McKee 
algorithm. 
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2.1.3.3. Obtaining the number of processes and establishing communications 

In this step, the most appropriate number of processes is obtained. Note that regions that are 
not close to any other are not relevant for this stage, because they can not grow, so they are 
not being condidered in this step. In order to obtain a good load balance, the same number 
of regions are assigned to the processes Figure 3 shows an example of this partition for 3 
processes. The entries that are inside one of these partitions are solved in this step, however 
the others (marked as shared entries in the figure) will not be solved now (they represent the 
shared overlap areas). The time needed to finish this step is limited by the process that has 
more entries in the partition of M. This number is denoted as Emax. In addition, shared 
entries will be processed in the final stage, if their number is Eshared, then the cost of both 
processes can be modelled by the linear expression K = A·Emax + B·Eshared. Parameters A and 
B are used to weight the relative cost among of this step and the final stage. In our 
experiments, we found that adequate values for them are: A=1.5 and B=1. Therefore, to 
obtain the optimum number of processes, K should be minimized. Finally, the regions are 
distributed among the selected processes, and the PRG algorithm is executed. 
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Fig. 3. Example of the partitioning of an adjacency matrix. 

2.1.4. Final stage 

In this stage, the shared overlap areas are solved sequentially by the RGS algorithm, and 
therefore the last overlap pixels are finally assigned to regions. Note that after this stage, 
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some groups of pixels, called islands, could be disconnected from the seed. These islands are 
easily detected by a flooding algorithm and finally added to their best neighbour region 
according to the similarity criterion. 

3. Obtaining the oversegmented image 

The PSRG algorithm presents two problems. On one hand, it has a great dependence with 
the initial position of the seeds. Moreover, the number of seeds is the number of regions of 
the final segmented image and therefore, we need a priori knowledge of the image to obtain 
a good segmentation. On the other hand, this type of segmentation algorithms (region based 
ones) force all the pixels of the image to belong to a region in the segmented image, so there 
will be pixels that belong to regions with low similarity levels.  

We deal with these problems creating an oversegmented image from different executions of 
the PSRG algorithm with seeds placed randomly and introducing the concept of shadow 
zone. Later, this oversegmented image will be processed by a region merging method (detail 
in Section 4) to obtain the final segmented image. Note that this proposal presents a two-
level parallelism: a coarse-grain one defined by the parallel execution of several PSRGs, and 
a fine-grain one defined by the parallel nature of the PSRG algorithm.  
The MPI library was used to implement the parallel code of this proposal. This library 
allows the definition of groups of processes that fits with our two-level parallelism model, in 
such a way that the number of processes to solve each partial segmentation and the number 
of partial segmentations can be easily established. In other words, if N partial segmentations 
are executed with P processes each one, then the total number of processes is NxP.

3.1. Generation of seeds 

Each partial segmentation is obtained from a different set of seeds. These seeds can be 
obtained randomly if there is no a priori information about the image. After that, each 
segmentation is obtained by executing the PSRG algorithm with P processors. 

3.2. Shadow zones 

As we have mentioned above, one of the drawbacks of the SRG and PSRG algorithms is that 
the number of regions is exactly determined by the number of seeds. Generally, the objective 
of the segmentation algorithms based on regions is the labeling of all the pixels of the image. 
In many cases, in the final stages of the process, this situation causes pixels to be included in 
regions from which they have very low similarity levels, thereby creating regions with low 
homogeneity. To avoid this effect we propose the inclusion of a specific threshold (ε) as a 
possible solution. This threshold would be such that those pixels with a low degree of 
similarity with respect to the target region are not included in it, remaining unlabeled. The 
set of unlabeled pixels will be called shadowed zones. Therefore, a pixel, after the partial 
segmentation, can be labeled and thus belongs to a region, or it can be included in a 
shadowed zone. 
Figure 4 shows the effect of applying PSRG with different values of ε on the Lena image and 
using 30 seeds. In particular Figure 4(b) shows the segmentation produced by PSRG without 
threshold, and Figures 4(c), 4(d) and 4(e) show the result when ε is more and more 
restrictive. Note that when ε is low, the image present more details that when ε is high. 
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However, when ε is too low, the number of shadow zones can be so high that their 
execution in the following stages is less efficient. 
It is important to note that the shadow pixels are not processed by PSRG algorithm. Any 
way, they will be taken into account in the creation of the oversegmented image and by the 
merging process. 

Fig. 4. Partial segmentations of the image Lena: (a) Original image, (b) ε = 255, (c) ε = 100, (d) 
ε = 50  and  (e) ε = 35. 

Figure 5 shows two partial segmentations produced by two different sets of seeds for the 
PSRG algorithm with no threshold (ε = 255) (Figures 5(a) and 5(b)) and the PSRG algorithm 
with ε = 35 (Figures 5(c) and 5(d)). As expected, note that the partial segmentations obtained 
by PSRG with ε = 35 are more similar to each other than the ones obtained by PSRG with ε = 
255. We can conclude that using PSRG with shadow zones minimize the dependence of the 
final segmentation from the initial position of the seeds.  
Our proposal generates an oversegmented image as a combination of various partial 
segmentations in which shadowed areas can exist. There are other segmentation techniques 
that create an oversegmented image such as watershed algorithms (Haris et al., 1998). As we 
detail later, we need to collect, from different partial segmentations, the information that 
will guide the merging process. In our algorithm an operation for intersecting all the partial 
segmentations is performed in such a way that those pixels that belong to the same region in 
all the partial segmentations remain united in one of the regions of the oversegmented 
image. Figure 6 shows a simple example of the creation of an oversegmented image formed, 
in this case, from three partial segmentations. The first partial segmentation presents a 
shadowed zone and two regions, whilst in each of the other two segmentations there are 

(a) (b) (c)

(d) (e)
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three regions and no shadowed zones. In this example the oversegmented image consists of 
five regions. 

     

    

Fig. 5. Partial segmentations of the image Lena using different seeds: (a) and (b) ε = 255,  (c) 
and  (d) ε = 35. 

In Figure 7 two oversegmented images obtained using four partial segmentations of Lena 
are shown. Note that when the threshold ε decreases, the number of regions of the 
oversegmented image grows. This behaviour is due to the existence of many shadowed 
zones in the partial segmentations obtained using the PSRG algorithm. This way, if 
shadowed zones exist in some of the partial segmentations, they are considered as any other 
region in the generation of the oversegmented image, although later, in the merging 
algorithm, they will be treated differently.  
Finally, Figure 8 shows the evolution of the number of regions of the oversegmented images 
created from 2, 3 and 4 partial segmentations of the Lena image using different number of 
seeds.  The results show that when using a higher number of seeds, the number of regions of 
the oversegmented images increases. This behavior is observed as well for an increasing 
number of partial segmentations.   

(a) (b)

(c) (d)
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Fig. 6. Example of the generation of an oversegmented image from three partial 
segmentations of 5×5 pixels with three regions each one. 

Fig. 7: Oversegmented image created using four partial segmentations of the image Lena: (a) 
ε = 255 and (b) ε = 50.
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Fig. 8. Average number of regions of the oversegmented image using Lena as input image: 
(a) ε = 255, (b)  ε = 100 and (c) ε = 50. 

4. Region Merging (RM) algorithm 

In a previous work (Pichel et al., 2006) a new region merging algorithm was introduced. The 
main contribution of this proposal is that all the relevant information to obtain the final 
segmented image is obtained exclusively from the different partial segmentations, both for 
creating an oversegmented image and for applying the subsequent region-merging 
algorithm. In this paper, the partial segmentations are performed using the PSRG algorithm, 
and later the RM algorithm is applied. This strategy does not take into account local 
characteristics such as size, shade of average grey intensities, etc. Based on the results 
obtained for all the pixels of the image in each of the partial segmentations, global 
conclusions are obtained with respect to them. Without losing generality, the merging 
algorithm uses a second-order neighborhood scheme, so that up to eight neighbors are 
defined for each pixel.  

The RM algorithm uses a force of repulsion between two neighboring pixels i and j that 
measures the tendency of these pixels to be or not in the same region. This force is given 
through the following equation: 
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)j,i(nC)j,i(nC)j,i(nC)j,i(nCf 44332211ij ++−−=  (4) 

where CK are parameters to weight each of the situations in which two neighboring pixels 
could be found, and nK is the number of times this situation occurs in the initial 
segmentations. The four situations are the following: both belong to same labeled region 
(n1), both belong to different labeled regions (n2), both belong to shadowed zones (n3), and 
one belongs to a region and the other to a shadowed zone (n4).
Therefore, two different components can be identified in Equation 4: on one hand an 
attractive component given by term -C1n1(i,j)- C2n2(i,j) that measures the tendency of these 
pixels to belong to the same region, and on the other, a repulsive component given by term 
C3n3(i,j)+C4n4(i,j) that measures the opposite. According with this equation, the lesser the 
force fij the greater is the tendency for these pixels to belong to the same region. 
Additionally, we have that the pixels that belong to the same region always verify fij<0. 
In (Pichel et al., 2006) an analysis to determine the way these parameters are related was 
performed. We can summarize the relationships between the parameters as: C4 > C1 > C3 >
C2. Moreover, several definitions were introduced. Let R be a region in the oversegmented 
image, and let S be a neighboring or adjacent region to it. We define the set of pixels of R
neighbors of S as: 

 }neighborsarejandithatsuch,Sj|Ri{V S,R ∈∃∈=  (5) 

S and R are neighbors if VR,S ∅.
For each i in VR,S, we define the associated set of its neighbors belonging to S, as: 

 }Viandneighbors,arejandi|Sj{U S,R
i

S,R ∈∈=  (6) 

Then, the force of repulsion between neighboring regions is defined as the average of the 
forces of repulsion of all the neighboring pixels belonging to each one of those regions: 

∈

∈ ∈=

S,R

S,R
i

S,R
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i
S,R

Vi Uj
ij

S,R
||U||

)f(

F  (7) 

where •  is the cardinality operator. 
The structure of the data used for representing the partitions of the oversegmented image is 
a region adjacency graph (RAG) (Haris et al., 1998). The RAG of a segmentation of K regions 
is defined as a weighted undirected graph, G=(V,E), where V={1,2,...,K} is the set of nodes 
and E ⊂ V×V is the set of edges. Each region is represented by a node, and between two 
nodes R,S ∈ V there is an edge (R,S) if the regions are neighbors. A weight is assigned to 
each edge of the RAG, so that those nodes joined by the lesser (or greater) weighted edge, 
depending on its definition, will be the regions that are candidates for merging. In our case, 
the function used to assign weights to the edges is the force of repulsion FRS given by the 
Equation 7 and therefore, the regions that are candidates for merging are those joined by the 
edge with least weight.  
Using the RAG as input, an iterative heuristic to deal with the problem of merging is 
proposed, so that one merging is performed in each of the iterations, based on the weight of 
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the edges. In each iteration of the RM algorithm, the pair of regions that have the smallest 
weight are merged. A data structure adequate for storing the weights is a queue, which can 
be implemented using a heap (Knuth, 1973). All the edges of the RAG are stored in the heap 
according to the weights, so that the first edge always has the smallest weight. Given the 
RAG of an initial partition of K regions denoted as (K-RAG), and a heap of its edges, the 
RAG of the partition K-n is obtained using the merging algorithm described in the following 
pseudo-code: 

DO i = 0, n-1 
       Find minimum cost edge in (K-i)-RAG 
       Merge the selected pair of regions to get the (k-i-1)-RAG 
       Update the heap 
END DO 

The K-RAG corresponds to the initial partition of the image, which in our case, is the 
oversegmented image. Subsequently, an iterative process is applied, in which, in the i-th
iteration, the two regions with the smallest eight are merged. Once they have been merged, 
the list of edges is updated, and the (K-i-1)-RAG is obtained. 
It is inferred that n iterations are needed to obtain the (K-n)-RAG. Therefore, one of the 
problems posed by this strategy is to establish the best value of n, i.e., the best number of 
regions of the final segmented image. Different alternatives can be used. For example, using 
the property of the growing value of the first term of the heap, a certain threshold can be 
selected to stop the iterations when the value of the edge at the top of the heap exceeds it. 
The main drawback of this approach is that it is not evident to determine a good threshold a
priori. Another approach is the use of a method that allows a numerical evaluation of the 
segmentation for choosing the best threshold according to some selected validation 
criterion.

Fig. 9. Average execution times of the PSRG algorithm using different parameters for the 
image Lena (512×512 pixels): (a) φ = 0.01, ε = 255, (b) φ = 0.05, ε = 255, (c) φ = 0.01, ε = 25 and 
(d) φ = 0.05, ε = 25. 
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5. Results 

In this section the results obtained by our proposal are shown. We have focused on two 
different aspects: the execution time required by the algorithm to obtain a final segmented 
image and the quality of the segmentation provided by the algorithm.  

5.1. Execution Times 

Our algorithm has been tested on a HP Superdome cluster with 128 1.5 GHz Itanium2 
processors and 384 GBytes of memory. As example, in Figure 9 the execution times of the 
PSRG algorithm using an image of 512×512 pixels (Lena) are shown.  The graphics point out 
that the code presents a good scalability, obtaining speedups up to 6.2 when using 8 
processors per segmentation. Note that the execution times when using ε are lower than 
those obtained when the threshold is not applied (ε = 255). This behavior is due to, as we 
have commented before, the higher number of pixels to be added to the regions. In turn 
when φ increases, the execution time of the PSRG algorithm also increases. 

Processors per partial segmentation 

Execution
Time (sec) 1 2 4 6 8 

PSRG 9.9 5.8 3.1 2.3 1.9 
RM 7.1 7.1 7.1 7.1 7.1 

PSRG+RM 17.0 12.9 10.2 9.4 9.0 
Table 1. Average execution times of the segmentation algorithm for the image Lena using a 
different number of processors per partial segmentation. 

Finally, we have measured the execution times of the global segmentation system including 
the parallel algorithm (PSRG) and the sequential one (RM). The results are shown in Table 1. 
In the example, four partial segmentations were performed in order to create the 
oversegmented image, with ε = 100 and φ = 0.05.

5.2. Evaluation of the segmentation 

As case of study we use function Q both to objectively evaluate the quality of the algorithm, 
as well as to adjust the value of the parameters of the weight function of the edges of the 
RAG. The evaluation function Q was proposed by Borsotti et al.(1998) for color images, 
which is a variant of that proposed by Liu and Yang (1994). One of its main advantages is 
that do not require any external parameter. Specifically, function Q is expressed by: 
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where N×M is the size of the image, R is the number of regions, Ai and ei are the area in 
number of pixels and the quadratic error of the color values of the i-th region, respectively. 
Also, R(Ai) represents the number of regions that have an area equal to Ai. The smaller the 
value of Q, the better the segmentation of the image. For images in grey levels, we have 

(8)
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adapted the normalization term of the previous equation to obtain values within a similar 
range to those obtained by Q in color images, and the definition of ei corresponds to the 
mean value of the grey level of the i-th region. 
In (Pichel et al., 2006) an exhaustive study was performed to a broad set of test images in 
order to determine the values of the weight parameters of the force of repulsion. Finally, the 
following values were proposed: C1=1, C3 =0.2, C3=0.8 and C4=2.
In order to illustrate the behaviour of our proposal in a more precise way, in Figures 10,  11 
and 12 the values of function Q compared to the number of regions of the oversegmented 
image using a different number of partial segmentations are shown. Shadowed zones, 
defined by different thresholds, have been used in all the tests. From the behavior Q, we can 
infer that when the number of regions is equal to the number that each image really has, Q
presents its minimum value.  
This behaviour is absolutely clear in the case of the image Test1 (Figure 10). This is a 
synthetic image and consists of 5 homogeneous regions. For this image, as we can observe in 
the figure, only two partial segmentations are needed to obtain a correct final segmented 
image. Nevertheless, the situation is different when the input image is a real one like Lena 
and Peppers (Figures 11 and 12). Note that, in these cases, a clear global minimum of Q does 
not exist, so we cannot decide on which is the best segmentation with this criterion. The 
information that we can extract is that an interval of values of Q exists, shown in the figures 
with an arrow. In this interval the most adequate segmentations can be found. The 
segmented images displayed correspond with a local minimum of function Q when using 
six partial segmentations. 
Therefore, based on these results we conclude that for the segmentation of real images, Q is 
very useful for determining the set of the most adequate segmentations, but in most of the 
cases it is not going to be sufficiently discriminating to select just one. But note that using 
our proposal high quality segmentations are obtained. 

Fig. 10. Segmentation of the image Test1: original image, result of the segmentation and Q 
compared to the number of regions. 
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Fig. 11. Segmentation of the image Lena: original image, result of the  segmentation and Q 
compared to the number of regions. 

Fig. 12. Segmentation of the image Peppers: original image, result of the segmentation and Q 
compared to the number of regions. 
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6. Conclusions 

In this work a parallel framework for image segmentation using region based techniques is 
presented. The algorithm is based on performing several segmentations of the same image 
using a parallel region-based algorithm. Moreover these segmentations are also obtained in 
parallel. This way, our proposal presents a two-level parallel layout. Next, an 
oversegmented image that collects all the information from the previous segmentations is 
created. A region-merging algorithm, developed previously by the authors, is then applied 
to this oversegmented image. A relevant aspect is that the information obtained from the 
partial segmentations will, in fact, guide the merging process, in such a way that the actual 
characteristics of each region or pixel are not taken into account.  

The merging algorithm uses the concept of force of repulsion between neighboring pixels 
that indicates quantitatively their tendency to form part of different regions. The force of 
repulsion considers several situations in which any two neighboring pixels can be found in 
all the partial segmentations that are used to create the oversegmented image, including the 
shadowed zones. The shadowed zones are groups of pixels that differ in their intensity level 
a certain threshold from the region in which they could be included. Introducing this 
concept in the region-based algorithms, regions with low levels of homogeneity are avoided, 
improving the quality of the whole process. Note that, given that the shadowed zones are 
not treated by the algorithm, the information that can be extracted from these zones is 
minimum. As stopping criterion of the merging algorithm, we use a function to evaluate the 
quality of the segmentation.  
The algorithm has been validated using several artificial and real images demonstrating the 
benefits of our proposal, and it was tested on a HP Superdome cluster. 
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1. Introduction      

2D Image segmentation has been a main issue in image analysis since the very early years. 
Traditional literature usually classifies segmentation approaches as area-based or contour-
based. In the second class, among dozens of different approaches, Active Contours have 
recently gained more and more interest. Active contours (also known as deformable models)
are open or closed curves that can accurately fit to the contours of objects featuring almost 
any kind of shape. These models are called active because they automatically respond to 
specific characteristics of the points of the image, by changing their shape consequently. For 
example, an active contour can respond to the  edgeness values of the image points.  
A particular type of active contour is the snake: it responds  both to the characteristics of the 
points of the image (through the minimization of a quantity called external energy), and to 
specific internal laws ruling its shape and way of deformation, tending to minimize a 
quantity called internal energy (Kass et al., 1988; Lai & Chin, 1995).  
It usually consist of elastic curves that, located over an image, evolve from their initial 
shapes and positions in order to adapt themselves to the notable characteristics of the scene. 
This evolution comes as a result of the combined action of external and internal forces. The 
external forces lead the snakes towards features of the image, whereas internal forces model 
the elasticity of the curves. In a parametric representation, a snake appears as a curve 
u(s)=(x(s),y(s)), s  [0,1], with u(0)=u(1). Its internal energy is often defined as 

( )( ) ( )| | ( )| |22 su+su=suE sssi  (1) 

A snake is made up of two factors: the membrane energy |us(s)|2, which weights its 
resistance to stretching, and the thin-plate energy |uss(s)|2, that weights its resistance to 
bending. The terms us(s) and uss(s) represent the first and second derivatives respectively. 
The elasticity parameters  and  control the smoothness of the curve. The external energy is 
generally defined as a potential field P,  

( ) ( )( )dssuP=uEe

1

0

  (2) 
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This external potential is a combination of different terms based on the application and the 
characteristics of interest.  
The total energy of the snake will be the sum of the external and internal energy terms along 
the curve u(s): 

( ) ( )( ) ( )( )[ ]dssuE+suE=uE eisnake   (3) 

The solution to the problem of detecting the contour is found in the minimization of this 
energy function.
Some other variations of the snake (snake spline) are represented by its parametric 
formulations much quicker and computationally less expensive (Flickner et al., 1996). 
Snakes, in high-noise conditions, can lose contact  with their primary target and can stick to 
some local maxima of the internal/external energy. On the other hand, very interesting 
results were obtained for automatic segmentation, even in presence of nested contours, by 
using level-set methods (Malladi et al., 1995).  
An interesting unifying approach to segmentation is described in (Malladi & Sethian, 1996), 
where a class of constrained clustering algorithms for boundary extraction (as a 
generalization of known algorithms) is introduced. With T-snakes (McInerney, 1997), also 
the conventional snake approach was extended to provide the ability of splitting and 
merging. These algorithms generally seem to suffer from an intrinsic high computational 
complexity and from an effect of  contours smoothing which can be undesired.  
In (Iannizzotto & Vita, 1996) and, later, in (Iannizzotto & Vita, 2000), a new kind of active 
contour was introduced: this is composed by a chain of autonomous agents (MOVing 
elements: MOVels), which move independently but in a collaborative fashion over the 
image, according to some very simple rules and some image features. The idea of exploiting 
both homogeneity and non-homogeneity as pixel feature for image segmentation appears 
very attractive to overcome (at least, partly) the problem of noise sensitivity. In (Jones & 
Metaxas, 1998) an attempt to combine active contours with deformable models is made, but 
the process is split into two distinct steps: first edge detection, accomplished by means of a 
similarity-based function; then, a curve fitting process is applied to the resulting binary 
image, by initializing a balloon-like deformable model (Cohen, 1991) inside each contour 
and letting it inflate and fit the contour itself. In (Zhu & Yuille, 1996) region-growing and 
balloon-based approaches are unified in a common framework relying, in order to perform 
energy minimization, on a competition-based technique. A segmentation algorithm is 
introduced, based on a basic competitive learning approach according to the classification 
given in (Theodoridis & Kotroumbas, 1999), integrated with a probabilistic, bayesian 
decision criterion instead of the common similarity distance, and with a region-merging 
extension. The described approach assumes that the probability distribution of the point 
features are gaussian: this is usually not true. In their paper, the authors actually point out 
this problem, while enforcing the generality of their results for  any probability distribution. 
However, no evidence is provided of this generality, and large part of the theoretical results 
seems to hold only for gaussian distributions. Finally, substantial prior information is 
exploited and needed, as prior probability distribution for the bayesian decision approach.  
Recently, a different approach was introduced, which exploits autonomous agents 
randomly spread throughout the image (Liu & Tang, 1999). An agent is positioned in an 
area which is non-homogeneous (in a sense which is defined in the paper), it moves toward 
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a homogeneous area. When it finds it, it breeds, producing new agents which will gradually 
cover this area. If an agent cannot find an homogeneous area, it doesn't breed and, after a 
given lifetime, it dies. The overall effect is that after a number of life-cycles, all the pixels in 
the image will be visited and classified, thus producing a segmentation. Moreover, since the 
main target of the agents is breeding, and breeding needs space for the offspring, in some 
sense the agents exhibit a competitive behaviour. 
When strong CPU power consumption constraints must be met, and high computation 
speed is mandatory (real-time processing) advanced computing resources cannot be used 
and so it is preferable to adopt custom hardware. 
An alternative approach to image processing is provided by the Cellular Neural Network
(CNN) paradigm, introduced by Prof. L.O. Chua in 1988 (Chua & Yang, 1988a; 1988b). A 
CNN consists of a network of first order nonlinear circuits, locally interconnected by linear 
(resistive) connections. CNNs have been extensively used in image processing applications 
(Matsumoto & Yokohama, 1990) such as filtering, edge detection, character recognition 
(Szirànyi & Csicsvàri, 1993) and object recognition (Milanova & Buker, 2000). Thanks to 
their architecture they can be applied to inherently parallel problems in which traditional 
methods cannot achieve a high throughput (Manganaro et al., 1999).  
Various approaches to implementing real-time segmentation techniques on CNNs have 
been proposed (Rekeczky, 1999; Kozek & Vilarino, 1999; Vilarino et al., 2003). In (Rekeczky, 
1999) “bias controlled trigger-waves” are used to determine the edge of an object in a scene, 
without, however, solving the problem of searching for nested objects. 
(Kozek & Vilarino, 1999) and (Vilarino et al., 2003) proposed an image segmentation 
strategy based on either a continous or discrete-time CNN architecture, capable of revealing 
any nested objects in a scene, but the level of accuracy of the edges extracted was not 
investigated.  
In the past, a still image segmentation technique (Iannizzotto et al., 2003) was developed, 
based on an active contour obtained via single-layer CNNs. The contour initially laid on the 
frame of the image shrinks, deforms and multiplies until it matches the edges of each of the 
objects present in the scene. The shape of each object in the image is accurately extracted and 
nested objects, if any, are correctly detected. Again, this technique suffer from sensitivity to 
noise as in the most of edge-based methods; noise may create insignificant false edges or 
determine some “edge fragmentation”.  
The aim of this work is to re-formulate the algorithm proposed within (Iannizzotto et al., 
2003) in order to step-over the weakness of this, and other similar, works. The technique 
accurately traces the edges of objects, nested at various levels, even in presence of false (or 
fragmented) edges. 
The input to the system is a gray-scale image  obtained by applying to the image a median 
filter and a gradient operator. Guided by statistical properties of  edgeness of the image 
pixels, the chain adapts its shape to that of the objects in the image until it marks out their 
contours. The output is a set of closed chains of points, each representing the contour of a 
single object. In the following sections we will describe the techniques developed and 
present a set of experimental results, laying particular emphasis on the evaluation technique 
used. In the final section we will draw our conclusions on the work carried out and discuss 
future lines of research. 



Vision Systems - Segmentation and Pattern Recognition 102

2. Cellular Neural Network 

As stated in the introduction, a CNN consists of an array of non-linear, locally 
interconnected, first order circuits.  As connections are local, each cell is connected only to 
the cells belonging to its neighbourhood, as it is shown in Fig.1. 

Fig. 1. Architecture of a CNN  

If we call the generic cell in the MxN array as Cij (the cell on the i-th row and the j-th column 
of the array), a formal definition of the neighbourhood of radius r of the cell Cij, Nr(i,j), is 
given by: 

( ) | | | |{ }{ }NlM,kr,jl,ikmax:C=ji,N klr ≤≤≤≤≤−− 11 (4)

An MxN CNN, with MxN cells arranged in M rows and N columns, is entirely characterized 
by a set of MxN nonlinear differential equations, associated with each cell. The generic cell 
xij is described by the following relations: 
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where:
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where
ijxv ,

ijuv ,
ijyv  are respectively the state, input and output voltage of the CNN cell Cij.

The state and output vary in time, whereas the input is kept constant. The indexes ij refer to 
the position of the cell in the 2D grid, while rNkl ∈  is a grid point in the neighborhood 
within the radius r of the cell ij. Matrices  A, B, A1, B1,   D, called templates, describe the 
interaction of the cell with its neighbourhood and regulate the evolution of the CNN state 
and output vectors. Template connections can be realised by voltage-driven current 
generators.

klij,A  is called linear feedback template, 
klij,B the linear control template, ijI is a current 

bias in the cell. 
klij,A1 , klij,B1  and 

klij,D  are nonlinear templates respectively applied to 

yyv ,
uuv  and v .

klij,A1  is called difference controlled nonlinear feedback template, 

klij,B1  is the difference controlled nonlinear control template, klij,D  is the generalized 

nonlinear generator. The output characteristic f adopted is a sigmoid-type piecewise-linear 
function.
CNNs are exploited for image processing by associating each pixel of the image to the input 
or initial state of a single cell. Subsequently, both the state and output of the CNN matrix 
evolve  to reach an equilibrium state. The evolution of the CNN is governed by the choice of 
the template. A lot of templates have already been defined in order to perform basic image 
processing operations, like gradient computation, smoothing, hole detection, line deletion, 
isolated pixel extraction and deletion, and so on. Simple operations can be performed just by 
using the basic templates A, B, and the bias I, whereas more complicated processing 
requires the use of the nonlinear templates A1, B1, and the generalized nonlinear generator 
D.  The proposed algorithm can be totally implemented onto a “CNN Universal Machine”
(CNN-UM), an hardware structure able to implement CNNs (Chua & Roska, 1993). 
The main advantage of using CNNs in image processing is related to the increasing of 
throughput due to the massive parallelism of the structure, joined to the similar  way of 
signal processing, typical of CNNs. In fact they are able to perform a complete image 
processing analysis in time of order of 10-6 s (by using a CNN hardware implementation), 
this in form of sequences of simple tasks like array target segmentation, background 
intensity extraction, target detection and target intensity extraction. 
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Depending on the type of neurons that are basic elements of the network, it is possible to 
distinguish continuous-time CNN (CTCNN), discrete-time CNN (DTCNN) (oriented 
especially on binary image processing), CNN based on multi-valued neurons (CNN-MVN) 
and CNN based on universal binary neurons (CNN-UBN). CNN-MVN makes possible 
processing, which is defined by some multiple-valued threshold functions, and CNN-UBN 
allows processing defined not only by threshold, but also by arbitrary Boolean function. 

3. Proposed Strategy 

In the algorithm presented the input to the system (a continous-time single layer CNN) is a 
gray-scale image  processed by applying to the original image median and gradient 
operators. Guided by statistical properties of edgeness of the image pixels, obtained during 
preprocessing phase, the chain adapts its shape to that of the objects in the image until it 
marks out their contours. A basic block diagram of this algorithm is shown in fig. 2.  

Fig. 2. Basic diagram of the algorithm  

The original image is segmented via iterative shrinking and deformation of a chain, initially 
laid on the frame of the image. The chain shrinks across the whole image so as to reveal all 
the objects present, and deforms in order to adapt to the objects detected. The chain 
comprises a set of pixels, arranged over the image in such a way as to form a closed chain. 
The sequence of operations adopted to shrink the chains is shown in fig. 3.  
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Fig. 3. Basic diagram of the shrinking process 

The chain is initialised on the image to ensure that it contains all the objects in the scene. 
Once laid, the chain undergoes an iterative process of shrinking and deformation in order to 
adapt itself to the borders of the objects in the image. Shrinking occurs maintaining the 
shape of the input chain, while deformation is obtained by combining the information from 
statistical properties of  edgeness (mean and standard deviation) of the image pixels and a 
binary image, result of preprocessing (see fig. 4) the original image. The iteration stops when 
a steady state is reached, i.e. the chain can't move any further. 
The statistical properties (mean and standard deviation computed on 5x5 neighbourhood) are 
obtained applying templates suggested in (Moreira-Tamayos  & Gyvez, 1999) on the 
edgeness image. “Mean” and “standard deviation”  images, just obtained, are then 
combined through a weighted sum, as shown in fig. 5, by means of standard sum and 
product operation. 
When a point of the chain meet a pixel of the image which features a very high value of  
edgeness this means that this point belongs to some object's border, so the chain should stick 
to this point. The point of the chain will therefore be “disabled”. At each step and for each 
point in the chain (MOVel) is computed a functional, if its value exceeds a fixed threshold 
the MOVel is disabled. This functional depend on neighbour edge points number and on 
pixel statistical properties. The functional is computed and thresholding is applied in the 
same step by means of templates shown in eq. 7. 
This operation return a map of points of the chain that have to be disabled. Each extracted 
point presents three characteristics: 
• high edgeness 
• belong to a region with high average edgeness 
• edgeness similar to that of its neighbours 
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In fig. 6 we can see input (Feature-1), bias (Feature-2), mask (i-th chain) and output (disabled 
points) of the operation just described. The threshold (implicit) depend on adopted 
parameters (see eq. 7). 
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During its evolution, the chain may contain separate, not nested, objects to be detected. If, 
during iteration, non-adjacent points of the chain overlap, the chain splits into two chains, 
which continue to evolve independently of each other. To detect the presence of nested 
objects, if any, a daughter chain is generated inside each contour obtained, and the operations 
mentioned above are repeated on this chain. The daughter chains evolve until they reach the 
contours being sought or, if they do not contain any objects, implode and disappear. The 
search for nested objects is resumed whenever moving chains reach their steady state. It 
ends when all the moving chains have imploded. 
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This means that all the objects in the scene have been detected, making any further search 
useless.

Fig. 4. Feature-1 extraction 

Fig. 5. Feature-2 extraction 

Fig. 6. Stopping phase 

4. Accuracy Evaluation 

Characterizing the performance of image segmentation approaches has been a persistent 
challenge. Performance analysis is important since segmentation algorithms often have 
limited accuracy and precision. 
For some applications (e.g. medical images analysis), interactive drawing of the desired 
segmentation by domain experts has often been the only acceptable approach, and yet 
suffers from intra-expert and inter-expert variability. Automated algorithms have been 
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sought in order to remove the variability introduced by experts, but no single methodology 
for the assessment and validation of such algorithms has yet been widely adopted. 
An automated algorithm is compared to the segmentations generated by a group of experts, 
and if the algorithm generates segmentations sufficiently similar to the experts it is regarded  
as an acceptable substitute for the experts. 
The most appropriate way to carry out the comparison of an automated segmentation to a 
group of experts segmentations is so far unclear. A number of metrics have been proposed 
to compare segmentations, including volume measures, spatial overlap measures, such as 
Dice (Dice, 1945) and Jaccard similarities (Jaccard, 1912), and boundary measures, such as 
the Hausdorff measure (Huttenlocher et al., 1993). Agreement measures between different 
experts have also been explored for this purpose. Studies of rules to combine segmentations 
to form an estimate of the underlying  true  segmentation have as yet not demonstrated any 
one scheme to be much favourable to another.  
We present here a new algorithm for estimating the  ground truth  segmentation from a 
group of experts segmentations. Then, we employ the estimated ground truth to assess and 
validate the results of our segmentation technique. To estimate a ground truth we use a 
technique known as Active Shape Model (ASM) with the aim to synthesize a model 
representative of a training set (segmentations generated by a group of experts).  
For this technique (Cootes & Taylor, 1992) the shape of an object is represented by a set of n
points, which may be in any dimension. Commonly the points are in two or three 
dimensions. 
The training set typically comes from hand annotation of a set of training images through 
landmarking. Good choices for landmarks are points which can be consistently located from 
one image to another: in two dimensions points could be placed at clear corners of object 
boundaries, “T” junctions between boundaries or easily located biological landmarks. This 
list would be augmented with points along boundaries which are arranged to be equally 
spaced between well defined landmark points. By analysing the variations in shape over the 
training set, a model is built which can mimic this variation. 
If a shape is described by n points in d dimensions we represent the shape by a nd element 
vector formed by concatenating the elements of the individual point position vectors. For 
instance, in a 2-D image we can represent the n landmark points, (xi; yi), for a single example 
as the 2n element vector, x, where  

( )Tn1,n y,y,x,x=x ......1,   (8) 

Given s training examples, we generate s such vectors xj. These vectors form a distribution 
in the nd dimensional space in which they live. If we can model this distribution, we can 
compare the model obtained in such a way with the segmentation result of our system 
processing. In particular we seek a parameterized model of the form x = M(b), where b is a 
vector of parameters of the model.  
Through Principal Component Analysis (PCA) we build a model of the object shape to 
segment obtaining also a dramatic reduction in size of the training set data. To obtain the 
model we execute the following steps: 
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1. Compute the mean of the data, 
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  (9)    

2. Compute the covariance of the data,  
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  (10) 

3. Compute the eigenvectors, i and corresponding eigenvalues i of S (sorted so that i

i+1).
If  contains the t eigenvectors corresponding to the largest eigenvalues, then we can 
approximate any of the training set, x using  

b+xx ≈   (11) 

where  = ( 1| 2| ... | t) and b is a t dimensional vector given by  

( )xx=b T −   (12) 

The vector b defines a set of parameters of a deformable model. By varying the elements of 
b we can vary the shape, x using Equation 11. The variance of the ith parameter, bi , across the 

training set is given by i. By applying limits of i± 3  to the parameter bi we ensure that 

the shape generated is similar to those in the original training set. 
The number of eigenvectors to retain, t, can be chosen so that the model represents some 
proportion (e.g. 98%) of the total variance of the data, or so that the residual terms can be 
considered noise.  
To estimate the quality of our system applied on a still-image, the results obtained by a 
group of experts have been collected and then used as training set to build an ASM. 
Once built the model, this is compared with the result of our system. The comparisons have 
been done using a normalized version (with respect to the number of selected landmarks) of 
the Mahalanobis distance.  
Fig. 7 shows an image selected from the test set alongside the relative segmentation images. 
Fig. 8  and fig. 9 show respectively the segmentation image manually obtained by a human 
operator and the one produced by our algorithm. In this case the normalised error is equal 
to 0,2. This is an intermediate value between those obtained but, as direct comparison 
shows, the resulting segmentation is visually acceptable. 
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Fig. 7.  An image selected from the test set 

Fig. 8. Manual segmentation 

Fig. 9. Automatic segmentation 

5. Experimental Results 

In order to show the validity of the proposed algorithm, we provide the results obtained on 
the same set of test images used in (Iannizzotto et al., 2003). Accurate measures were 
performed on a set of 20 gray-scale images, specially selected for their contents. As 
mentioned in section 4, the method chosen to evaluate the results obtained by the algorithm 
is based on a comparison between the segmentation image obtained automatically and the 
estimated ground truth obtained as previously described (see par. 4).  In Fig. 10 a selection 
of the test images is shown.  Figs. 11 and 12 respectively show the segmentation images 
obtained by a group of experts and those obtained by applying the algorithm being 
proposed. Fig. 13 is a plotting of the error produced by our algorithm against the processed 
image. As the graph in Fig. 13 shows, the error on the test images is bounded around an 
average value of 0.2 in comparison with 0.3 obtained applying the same validation 
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technique to the algorithm described in (Iannizzotto, 2003). These results show a reduction 
of the average error for the segmented images. It is due both to the used metric, which is less 
sensitive to impulsive noise, and to an actual improvement of the algorithm performances. 
In fact, the use of median operator has got rid of some peak in the error trend (Iannizzotto, 
2003), caused by noise in the image, and the use of statistical features has made possible a 
“generalized” reduction of the error.  

Fig. 10. A selection of the test images 

Fig. 11. Manual  segmentation of the test images 

Fig. 12 Automatic segmentation of the test images 
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6. Competitive Approach 

The technique we proposed, although effective in its results, is still affected by some 
parameter dependences: thresholds and weighting values used during computation. A 
possible solution, is an approach to image segmentation based on competing chains. Each 
chain acts as a competitive active contour which reacts to image features. Our work aims at 
producing a framework in which image segmentation is performed without any user input 
(namely, unsupervised segmentation) and with the minimum amount of prior  information.  

Fig. 13. Graph of results obtained 

The competition-based approach will heavily reduce the influence of initialization on the 
final result (Zhu & Yuille, 1996).  
In the following we outline the competition-based approach through a brief description of 
our algorithm.
At initialization time, K chains are generated and uniformly spread over the image. The 
number K depends on the size of the image and  will usually be quite large  to correctly 
segment the image independently of the initial position of the chains.  
After the initialization, each chain grows in size until it meets another chain or a high 
edgeness contour. In the latter case, if the contour is closed and surrounds all the chain, the 
chain sticks to it, stopping its growth process and breeds, generating a new chain which will 
grow beyond the contour. This process allows the algorithm to detect multiple nested 
objects as chain hierarchies.
If the chain meets another chain, they start competing for the territory (i.e. an area in the 
image), and after a finite time a steady state will be reached. One of the two chains will 
probably “conquer” some part of the territory, until some line will be found, composed of 
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pixel which are equidistant from both the chains. This line will be the border between the 
two chains. 
At each step the pixel gray-level mean, a feature representative of all pixels surrounded by 
the chain, is estimated. The chains compete for the territory based on similarity between 
their “mean” and the gray-level of the point “to conquer”. It cannot happen that one of the 
chains totally defeats the other, since at least the original area of a chain (i.e. the one 
surrounded by the chain at initialization time) will always match better its “statistic”. But if 
two chains lay on the same, uniform, area then they will have the same statistic: in this case, 
as soon as they meet, they merge, thus producing a larger chain with the same statistic. The 
sequence of operations adopted to let the chains grow is shown in fig. 14. 

Fig. 14. Expansion phase 

Fig. 15. Collision point detection 
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The detection of the collision point between chains is obtained using the approach proposed 
in (Vilarino et al., 2003). 
An example of collision detection between two chains and merging chains, automatically 
handled by the algorithm, is shown in fig. 15.  
Fig. 16 is a plotting of the error produced by our algorithm against the processed image. As 
the graph in Fig. 16 shows, the error on the test images is bounded around an average value 
of 0.18 in comparison with 0.2 obtained applying the same validation technique to the 
algorithm described in section 5. 

Fig. 16. Graph of results obtained 

7. Conclusion 

In this work we have described a re-formulation of a 2D still-image segmentation algorithm, 
implemented on a single-layer CNN, previously proposed (Iannizzotto, 2003). This 
algorithm is able to step-over limitation inherent to the class of active contours: sensitivity to 
insignificant false edges or “edge fragmentation”. The approach features an iterative process 
of uniform shrinking and deformation of the active contour. Guided by statistical properties 
of edgeness of the image pixels, the chain adapts itself to the image contours. Undesirable 
smoothing of the edges of the objects are prevented by the absence of any particular rigidity 
constraints on the chain. The technique used for uniform shrinking, which automatically 
handles any splitting, allows the presence of any nested edges to be detected. 
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Experimental measures of the accuracy of the segmentation were carried out using a 
technique based on Active Shape Models. Finally, an alternative competition-based 
approach, used to reduce some parameter dependences, is outlined in section 6. 
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1. Introduction      

Robotics advances have generated an increasing interest in new research projects and 
developments. Nowadays this science has several new applications characterized by 
working in non-structured dynamic environments. As a result, the research on this 
emerging area is growing, and, specially, vision algorithms are constantly being improved. 
In many cases, navigation needs real-time answers. As robots often work in dynamic 
environments, it would be desirable that the system takes a decision and applies it before 
external conditions change. 
Much work has been done on solving the problem of planning shortest paths between 
different locations within an environment (also known as a workspace) scattered with 
obstacles. For these solutions, the obstacles are usually considered as solid objects, and a 
collision-free path (of possibly shortest distance) must be found to navigate around them. 
However, not all path planning applications can be modelled as such a problem.  
On the other hand, Mathematical Morphology (MM) is a useful tool in image analysis, 
commonly used to extract components of the image, like contours, skeletons and convex 
forms. Although there are some approaches that take into account topographical maps in 
order for a robot to navigate through a workspace, few approaches actually deal with 
Mathematical Morphology operations. 
In this chapter we will focus on some of the research that we have completed in this field in 
the last few years. This way, two different robotic MM-based applications are discussed:  
• Path planning, which is strongly influenced by the precision of the acquisition process. 

Thus, it can be modified both by the quality of the information obtained from the 
environment, and the attributes of the system and the environment in which it works. 
Here, we shall refer to vision-based path planning. 

• Image segmentation, which is an essential part of any intelligent system, since it is 
necessary for further processing such as feature extraction or object and face 
recognition, among others. 

The research work here described has obtained very good experimental results and would 
contribute to the development of practical recognition and path planning systems. The use 
of vision improves the system, since once the visual information has been interpreted in 
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order to provide a basic world representation, then the objects may be modelled to 
determine a free path. 

2. Mathematical Morphology Overview 

The term Mathematical Morphology commonly denotes a branch of Biology that deals with 
the shape and the structure of plants and animals. We use here the same word as a tool to 
extract image components that are useful in the representation and description of regions, 
such as contours, skeletons and convex forms. 
The basis of Mathematical Morphology is the set theory. Sets in Mathematical Morphology 
represent the shapes of the objects in an image. The morphological operations are based, 
therefore, in geometric relations between the points of such sets. 
This discipline focuses on the morphological transformations of images, i.e., erosion, 
dilation and its combinations, when some local operators, called structuring elements, are 
applied. The shape and the position of the origin of the structuring elements have a decisive 
influence on the final result of the morphological operator (Serra, 1992). 
Mathematical Morphology describes objects as subsets of the Euclidean space. The 
fundamental structure in Mathematical Morphology is the complete reticulum (Serra, 1982), 
that is, a set ℜ where for all the elements {Xi} ∈ ℜ, two fundamental laws exist: the 
supremum (sup) or the minimum upper level (∨{Xi}) and the infimum (inf) or the maximum 
lower level (∧{Xi}). This structure explains the most common processes used in 
Mathematical Morphology. A binary image can be modelled as a set belonging to a boolean 
grid. A gray-level image is modelled as a function belonging to the set of the upper semi-
continuous functions. 
The two basic operations defined in Mathematical Morphology, erosion and dilation, are 
described below. 
Set Erosion  
The erosion of a set X using a symmetrical structuring element B is the locus of the centre of 
the structuring element B, when B is included in X (Serra, 1982). It can be written as: 

εB(X) = { y, ∀ b ∈ B, y + b ∈ X } =
Bb

bX
∈

+ )(  (1) 

Set Dilation
The dilation of a set X by a symmetrical structuring element B is the locus of the centre of the 
structuring element B, when B hit X (Serra, 1982). It can be written as: 

δB(X) = { x + b, x ∈ X, b ∈ B } = 
Bb

bX
∈

+ )(  (2) 

The erosion and the dilation are dual operations: the dilation of a binary image is the 
complemented erosion of the complementary image. The erosion of a binary image is the 
complemented dilation of the complementary image. 
From these basic operations, dilation and erosion, more complex transformations are 
constructed, as opening (dilate the result of an erosion) and, its dual operation, closing 
(erode the result of a dilation), to implement basic filters. 
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3. Path Planning Applications of Morphological Filtering 

3.1 A General Review of Path Planning 

Robot path planning has proven to be a hard problem. There is strong evidence that its 
solution requires exponential time in the number of dimensions of the configuration space, 
i.e., the number of degrees of freedom (DOF) of the robot. This result is remarkably stable: it 
still holds for specific robots, e.g., planar linkages consisting of links serially connected by 
revolute joints (Joseph & Plantiga, 1985), and sets of rectangles executing axis-parallel 
translations in a rectangular workspace (Hopcroft & Wilfong, 1986). Though general and 
complete algorithms have been proposed (Canny, 1988), their high complexity precludes 
any useful application. This negative result has led some researchers to seek heuristic 
algorithms. While several of such planners solve difficult problems, they often fail or take 
much more computation times than simpler ones. The fact that their behavior is not well 
characterized is a major drawback: they cannot be used as black boxes in larger robot 
control systems. 
Collision-free path planning, which assumes perfect knowledge of the world and stationary 
obstacles, is only the most basic motion-planning problem in robotics. Clearly, we would 
ultimately like robot planners to deal with issues such as uncertainties, moving obstacles, 
movable objects, and dynamic constraints. But every extension of the basic problem adds to 
computational complexity. For instance, allowing moving obstacles makes the problem 
grow exponentially with the number of moving obstacles (Canny, 1988). Before we can 
effectively investigate such extensions in large configuration spaces, it seems that we must 
better understand how to practically solve basic path planning. 
Path-planning applications are so diverse that it is infeasible to design a tailor-made 
algorithm for every possible robot. Instead, we need general path-planning algorithms not 
bound to the specifics of any particular robot. We believe that between the two extreme 
types of planners suggested above –complete and heuristic– there is a place for practically 
efficient general planners achieving a weaker form of completeness. In other words, we may 
perhaps trade a limited amount of completeness against a major gain in computing 
efficiency. Full completeness requires the planner to always answer a path-planning query 
correctly, in asymptotically bounded time. A weaker, but still interesting form of 
completeness is the following: if a solution path exists, the planner will find one in bounded 
time, with high probability. We call it probabilistic completeness. This weaker completeness 
becomes particularly interesting if we can show that the planner's running time grows 
slowly with the inverse of the failure probability that we are willing to tolerate.

3.2 Layout of Paths 

Let us consider an application of the morphological primitives that are described in section 
2, a method for the accomplishment of maps for gray-tone images (that should have been 
captured by the robot camera) as a previous step to collision-free path planning. Supposing 
that the obstacles in the picture room are represented in dark tones, the point is that images 
that have to be processed should be represented in a proper way. In a real situation a 
perspective transformation ought to be made. 
Let I be the original image and I’ the result image, then the followed algorithm to draw up 
the land map of an image that shows a room, and using a dilation with a n×n SE, is the next 
one:
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U=mean(I)
threshold = U
Binarize(I)
while (not  End condition) do 

Dilation(I, I’)
Change black tone to gray tone in I’

end while 

Table 1. Land map algorithm 

The result of this operation results in black objects surrounded by gray tones of greater 
intensity, until becoming into a white color, as we show in figure 1. White color is 
considered the tone in which the probability of collision with an object in a path followed by 
the robot is minimum. Consequently, in the 3D view (figure 2) the high zones would be a 
low risk for the robot. 

(a) Picture of the room                        (b) Land map 
Fig. 1. Land map for an image. 

Fig. 2. 3D View of the land map. 
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Once determined the land map of a room, we want to show an example of high security 
trajectories that an autonomous vehicle could follow through it, to avoid the collision with 
the obstacles located in this workspace. So we are going to see some of the possible paths 
that the vehicle would decide to execute in figure 3, where o is the origin of the path and e is 
the end of the path. The algorithm is:  

Select origin 
while ((origin<>edge) OR (origin_value<>black)) do  
Find maximum in neighborhood 3x3 
if (maximum_value > origin_value)  
origin = maximum 

else, if (maximum_value = origin_value)
origin = maximum 
          else
  Follow path 

end while 

Table 2. Path planning algorithm 

Fig. 3. Possible trajectories followed by a mobile robot. 

3.3 Improving the Path Planning Algorithm 

In this section we propose an improved Mathematical Morphology-based path planning 
algorithm. Let us consider that the vision-based system works with grey-scale images. First, 
a map that separates obstacles from free-space is obtained; this initial processing 
method can be described as: 
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1. Apply a Gaussian smoothing to the original 
image.

2. Associate a set of symbols for each pixel. These 
symbols are extracted from: 

a. The gradient of the image. 
b. The variance considering each 

pixel's neighborhood. 
3. Merge the results by means of the creation of a 

new image, where lower intensity pixels 
represent a higher probability of being classified 
as an obstacle. 

4. Binarize the image, where obstacle pixels are 
labelled as ‘0’ and free-space pixels as ‘1’. 

5. Repeat the following steps: 
a. Implement the SE-decomposed 

morphological dilation. 
b. Change black tones to a grey tone, 

increasing the grey intensity for 
each iteration. 

6. Obtain a map where higher intensity pixels 
constitute the obstacle-free zones. 

Table 3. Improved land map algorithm 

As soon as this map is obtained, the path planning algorithm can be executed. From the 
starting point of the path, the algorithm chooses the pixel with the lowest probability of 
collision in a 3x3 neighbourhood; once selected, the first movement is performed. This 
choice is carried out considering two criteria: 
• The closeness to the obstacles. It is preferred to move to positions with high intensity, as 

they have a low probability of collision. 
• The accomplishment of the task. This criterion makes the robot follow its path towards 

the destination point in case there are several similar or equal intensity values in the 
neighbourhood. 

Hence, the selection of the next pixel in the robot's path will be completed by using a 
normalized weight which ensures that the new pixel has the lowest probability of collision 
in the neighbourhood. To do this, we define a set of weights wi that are estimated as: 

( )newold distdista
i ew −= *  (3) 

where distold is the Euclidean distance from the current pixel to the destination one, distnew is 
the Euclidean distance from the selected new pixel to the destination one and a is a real 
constant, so that 0 a 1.
As a consequence, the robot will move to the pixel with the highest weight wi; this operation 
will be repeated until it arrives to the destination or there is some failure due to a collision 
with non-detected obstacles. Therefore, the higher factor a is, the bigger differences among 
the weights wi exist; obviously, factor a is a critical element for the robot to follow an optimal 
path to the destination, as it provides the best weights wi to complete the path planning task. 
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In relation to this, the following section analyzes practically how to achieve a fast, powerful 
operation in some example situations. 

3.4 Experiments 

Let us consider now the results of some experiments that will test the suitability of our 
model. First of all, Fig. 4 (a) shows a world created for the robot to wander throughout it. 
We assume that there is no perspective distortion; this situation occurs when the camera's 
optical axis is not perfectly perpendicular to the presentation surface. This distortion, which 
is part independent, can be compensated for using a homogeneous transformation. 

       

(a)                        (b)  
Fig. 4. The environment for path planning: (a) World 1 (b) A morphological map 
At this point, the algorithm developed before is applied; thus, the resulting map after the 
initial processing method, using a 3x3 square SE, is depicted in Fig.4 (b). 

From this map, a trajectory is followed after defining its origin and destination pixels (i.e., 
locations in real world). To do this, the weights wi must be estimated using Eq. (3) and, 
additionally, factor a should be defined. In Fig. 5 some example paths for a 3x3 square SE 
(where factor a varies from 0.1 to 1.0) are shown. Note that i refers to the initial point of the 
path, and f indicates the final point of the path. 
The analysis of these examples shows that if factor a has a high value (Fig. 5 (a)), the 
algorithm will select a path that easily reaches the destination point, although it is not 
collision-free as the approaching to the obstacles can be sometimes dangerous. This will lead 
to the incorporation of some other sensing capabilities to prevent from collision. On the 
contrary, when factor a has a low value (Fig. 5 (c)), the robot may stop before completing its 
task, since it is preferred not to move close to the obstacles. As a consequence, factor a has a 
better behaviour when it makes the robot follow an optimal or semi-optimal path that keeps 
it away from collision (in this example, a = 0.1, see Fig. 5 (b)). 
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(a)   (b)    (c) 
Fig. 5. Some paths followed in the environment: (a) Factor a = 1.0 (b) Factor a = 0.1 (c) Factor 
a = 0.05. 

Nevertheless, the choice of an appropriate factor will depend mainly on the map of the 
environment produced after the initial method. Moreover, there must be a training process 
to determine a well-suited factor before a real operation. 

4. Image Segmentation with Mathematical Morphology 

Designing an image segmentation scheme needs the consideration of two features of visual 
recognition: cost and uncertainty. Visual recognition is generally costly because the image 
data is large. Visual information contains uncertainty from many sources such as 
discretization. In general, the more observation a vision system performs, the more 
information is obtained, but the more cost is required. Thus, a trade-off must be considered 
between the cost of visual recognition and the effect of information to be obtained by 
recognition. In relation to this, some of the most popular approaches which provide low 
computation times and good information are the threshold techniques and the edge-based 
methods (Ouadfel & Batouche, 2003), (Pal, & Pal, 1993). 
Threshold techniques, which make decisions based on local pixel information, are effective 
when the intensity levels of the objects are exactly outside the range of the levels in the 
background. These thresholding algorithms are simple and give very good results, but 
deciding the threshold values is not easy. Specially, this is a really serious problem for an 
automated vision system, as the system should decide the threshold values taking its own 
decision. 
On the other hand, edge-based methods (e.g., gradient operators) focus on contour 
detection. They involve finding the edges of objects in the image and using this edge 
information to achieve the complete boundaries for the main objects in the image. Edge 
detection has many problems, especially when working with noisy images, since it could 
even fragment the true edges. 
To overcome these problems, we propose a method that combines both thresholding and 
gradient operators: the so-called Morphological Gradient Threshold (MGT) segmentation, as 
described in Table 4. It consists of 7 main steps, where the gradient and the Laplacian are 
calculated in terms of Mathematical Morphology operations and the optimal threshold 
value is selected by measuring the lowest distance between the ideal segmentation and a 
collection of MGT segmented images. 
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Step 1. Image smoothing. 
Step 2. Global dilation and erosion. 
Step 3. For every pixel, create a list of symbols by means of 
the Morphological  gradient and the Morphological 
Laplacian.  
Step 4. Creation of a pixel-symbol map. 
Step 5. Binarization of the pixel-symbol map. 
Step 6. Computation of a suitable measure to obtain the 
optimal threshold. 
Step 7. Obtention of the MGT segmented image. 

Table 4. MGT segmentation algorithm 

4.1 Construction of a Pixel-Symbol Map 

In every digital image there is a certain amount of white noise. To avoid the noise effects, 
which only consume computation time and affect the real image features, an initial filtering 
process has to be applied. There are many algorithms to accomplish this task; in our 
approach a Gaussian filter has been chosen, since it preserves many of the image features 
while its computational cost can be assumed in a real-time environment. For more 
information see (Basu & Su, 2001). 
Once the noise is eliminated, the point is how to create the pixel-symbol map. To do this, let 
us consider first the computation of some derivative-based operations, i.e., the gradient and 
the Laplacian. 
Edge detection is a main problem in image analysis. There are many approaches to obtain 
edges by means of the gradient of an image (e.g., Prewitt or Sobel operators). Among all of 
these methods we find the morphological gradient, which uses the Mathematical 
Morphology operators. 
Therefore, one can define the morphological gradient of an image X by a structuring element 
(SE) B, B(X), as: 

B(X) = 
2

1
( B(X) - εB(X)) (4) 

where B(X) and εB(X) are, respectively, the dilation and the erosion of an image X by a SE B. 
The following step is to calculate the second derivative, the Laplacian. Again, we have 
chosen a morphological implementation for the Laplacian, as we can use with costless time 
the previously pre-calculated erosion and dilation. Thus, the morphological Laplacian of an 
image X by a SE B, B(X), is defined as: 

B(X) = 
2

1
( B(X) + εB(X)) - X (5) 

The results for a gray-scale image after these initial steps are shown in Fig. 6, where the SE B 
is a 3x3 square. 
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(a)   (b)    (c) 
Fig. 6. A real image: (a) Original image. (b) B(X). (c) B(X). 

The next task is building a map that characterizes properly the pixels for a good 
segmentation. Thus, the pixel-symbol map m(x,y) is obtained as follows: 
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where MGT is the morphological gradient threshold and (x,y) is a pixel in X. The resulting 
image has three different gray-levels, according to if a pixel belongs to an object, to the 
background or to the borders. 
The choice of the threshold value is one of the most difficult tasks, since the final result is 
high dependent on many factors, such as lighting conditions, objects texture or shading. Fig. 
7 shows the results of the construction of the pixel-symbol map for the image in Fig. 6, with 
several different MGT values. 

(a)   (b)                     (c) 
Fig. 7. The pixel-symbol map m(x,y) with different MGT values: (a) Gradient mean. (b) MGT 
= 0.9  * max( B(X)).  (c) MGT = 0.8  * max( B(X)).

Though many practical systems utilize an experimentally obtained threshold, in this work 
we consider the use of an automated thresholding system. This method takes into account a 
binary image metrics to compare the segmentation results and, afterwards, to establish the 
quality level of the obtained segmentation, as it is described in the following section. 
4.2 A Measure of the Quality of the Segmentation 
A main problem in computer vision is to be able to compare the results using a proper 
metrics. This will quantify the differences between two images and, if binary images are 
used, the method would be both easily implementable and low computationally complex. In 
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our system we are interested in measuring the distance between image G (the map after 
gradient thresholding) and image A (the ideal segmentation). Thus, it will establish the 
optimal MGT value. 
Hence, the map must be binarized first. To do this, we must recall that m(x,y) has only 3 
gray-levels (Eq. (6)): 0, 128 and 255. For simplicity, let us consider that the threshold is the 
same as in the construction of m(x,y), i.e., the gradient threshold MGT. The results of this 
process are shown in Fig. 8. 

(a)   (b)                     (c) 
Fig. 8. Binarization with different MGT values: (a) Gradient mean. (b) MGT = 0.9  * 
max( B(X)).  (c) MGT = 0.8  * max( B(X)).

Next, a reliable measure to compare the obtained image segmentation with an ideal 
segmentation must be selected. 
As proved in (Pujol et al., 2000), a good error measurement for binary images is p(A,G),
defined as the pth order mean difference between the thresholded distance transforms of two 
images: A (the ideal segmentation) and G (the binary pixel-symbol map). Let us define first 
some previous terms: 
• Let X denote the pixel raster. 
• A binary image A ⊆ X is a set A= {x ∈X : A(x)=1}. 
If (x,y) is the distance between two pixels x and y, the shortest distance between a pixel x
∈X and A ⊆ X is defined as: 

 d(x,A) = inf { (x, a) : a ∈ A} (7) 

Then, for 1 , we define: 

p(A,G) = 

p

Xx

pGxdwAxdw
N

/1

)),(()),((
1 −

∈

 (8) 

where N is the total number of pixels in X and w(t) = min(t, c), for c>0. 
Intuitively, p(A,G) measures the suitability of an estimated image to be used instead of the 
real one. 
Now, we can evaluate the goodness of our segmentation scheme. 

4.3 Experiments 

Let us show now the results of some experiments completed for our model. The tests have 
been performed with a set of real images, whose pixel-symbol maps have been calculated 
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for different MGT values. Then, after applying the binarization process, the distance p(A,G)
has been computed. 
Table 5 shows the results for the image in Fig. 8, where p = 2, c = 5. 

MGT value Distance p(A,G)

MGT = 0.95 * max( B(X)) 0.2722 

MGT = 0.9  * max( B(X)) 0.1988 

MGT = 0.85 * max( B(X)) 0.3412 

MGT = 0.8 * max( B(X)) 0.3704 

MGT = 0.75 * max( B(X)) 0.4966 

Table 5. Results obtained after the segmentation process. 

As shown, the lowest distance is obtained when MGT = 0.9 * max( B(X)). Fig. 9 compares 
the ideal segmentation and the MGT segmentation with the lowest p(A,G) distance. 
Intuitively, if we compare the previous results in Fig. 8, the selected MGT value is quite 
similar to the ideal segmentation. 

(a)   (b)    (c) 
Fig. 9. (a) Original image.  (b) Ideal segmentation. (c) MGT segmentation. 

Let us consider now a more complex real image in order to confirm the accuracy of our 
technique to give an automated extraction of the threshold value with the best behavior. Fig. 
10 and Table 6 show the results. 

(a)   (b)         (c) 
Fig. 10. (a) Original image.  (b) Ideal segmentation. (c) MGT segmentation. 
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MGT value Distance p(A,G)

MGT = 0.95 * max( B(X)) 0.5526 

MGT = 0.9  * max( B(X)) 0.3115 

MGT = 0.85 * max( B(X)) 0.2245 

MGT = 0.8 * max( B(X)) 0.2731 

MGT = 0.75 * max( B(X)) 0.3219 

Table 6. Results obtained after the segmentation process. 

The minimum distance is obtained again when MGT = 0.9 * max( B(X)) and, as a 
consequence, we can conclude that the parameters used for this segmentation are near 
optimal, as they have a behavior very close to ideal segmentation.  
Nevertheless, the threshold could be adaptively updated so as to assume the real conditions 
in which every image has been taken by the vision system. 

5. Conclusion 

In general terms, the path planning process for suitable morphological gradient threshold. 
To do this, global morphological operators have been used to compute the gradient and the 
Laplacian and, after a proper binarization, the distance between the ideal segmentation and 
the MGT segmentation has been computed. As a consequence, the gradient threshold with 
the lowest distance has been selected as the optimal threshold value. Experimental results 
show that our model is fast and robust and could be applied for real-time imaging. 
As a future work, to fully appreciate the implications of incorporating a path planner into a 
robot system it is necessary to consider a real robot system. The use of simulations can give 
a good idea of the ability to solve the basic problem but it is also necessary to consider how 
the planner will receive input data and how the output path will be used to generate a 
trajectory and be implemented by a physical robot. This will make possible a more accurate 
designing method so that the robot internal hardware and software could be efficiently 
implemented.
Finally, the results of our research could be extended to object classification and recognition. 
It would be also an interesting task to consider new simulation experiments with different 
environments, such as image sequences obtained from a camera placed in a robot platform, 
where real-time constraints have a great influence a mobile robot is strongly influenced by 
the precision of the acquisition process. Thus, it can be modified both by the quality of the 
information obtained from the environment, and the attributes of the system and the 
environment in which it works. 
In this chapter, we have developed a proposal of a model for the generation of a map in 
unknown environments. To do this, we have described a path planning technique for 
autonomous robots that uses morphological filtering. In this method, some high security 
paths for a robot to follow are computed; the experimentation shows that the prototype is 
robust and can be applied in real time for many robotic applications, since it is a very quick 
algorithm to compute free paths with high probability of no collision. 
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On the other hand, image segmentation is an essential issue since it is the first step for image 
understanding, and any other step, such as feature extraction and recognition, heavily 
depends on its results. In this chapter, we have also described a novel approach to image 
segmentation based on the selection of a in the final recognition results. 
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1. Introduction    

Recently, human-robot interaction is receiving more and more interest in the robotics as well 
as in the computer vision research community. From the robotics perspective, robots that 
cooperate with humans are an interesting application field that is expected to have a high 
future market potential. A couple of global and also mid-sized companies have come up 
with quite sophisticated robotic platforms that are designed for human-robot interaction. 
The ultimate goal is to place some robotic assistant or companion in the regular home 
environment of people, who would be able to communicate with the robot in a human-like 
fashion. As a consequence, the “hearing” as well as the “seeing” -- as the most prominent 
and equally important modalities -- are becoming major research issues. 
From the computer vision perspective, robot perception is more than an interesting 
application field. During the last decades, we can note a shift from solving isolated vision 
problems to modeling visual processing as an integral connected component in a cognitive 
system. This change in perspective pays tribute to important aspects of understanding 
dynamic visual scenes, such as attention, domain and task knowledge, spatio-temporal 
context as well as a functional view of object categorization. 
The visual recognition of human actions is in the center of all these  aspects and provides a 
bridge for a non-verbal as well as verbal communication  between a human and the robot, 
which both are highly ambiguous. It enables the robot's anticipation of human actions 
leading to a pro-active robot behavior especially in passive, more observational situations. 
Furthermore, it draws attention to manipulated objects or places, embeds objects in 
functional as well as task contexts, and focuses on the spatio-temporal dynamics in the 
scene.   
Recently, much work has been done in the area of gesture-based human-robot interaction 
(HRI) because of humans' intensive use of their hands. These approaches mostly deal with 
symbolic, interactional, or  referential gestures that have a communicative meaning on their 
own (Nehaniv, 2005).  In terms of Bobick's taxonomy of movements, activities, and actions
(Bobick, 1998) they can be characterized as movements or, in more structured cases, 
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activities. In this regard, object manipulations2 are more complex because the hand 
trajectory needs to be interpreted in relation to the manipulated object. Due to Bobick this 
kind of context characterizes actions.
In this chapter, we aim at the vision-based recognition of simple actions that are defined by 
a non-deterministic sequence of object manipulations. As a manipulative gesture, this serves 
an important communicative function in human-robot interaction. First, the manipulation of 
an object draws the attention of the communication partner on the objects that are relevant 
for a performed task. Secondly, it serves the goal of a more pro-active behavior of the robot 
in passive, more observational situations. As Nehaniv states: “If the robot can recognize 
what humans are doing and to a limited extent why they are doing it, the robot may act 
appropriately” (Nehaniv, 2005). For example, in Fukuda's work a cooking support robot is 
developed (Fukuda et al., 2005). It can recognize human manipulations of objects by sensing 
the movements of the markers on the objects and give  recommendations by speech or 
gesture. Dropping these kinds of artificial constraints, the recognition problem is becoming 
notoriously difficult. Assuming that a hand is manipulating a spatially near object, it 
becomes hard to decide if the object is just passed by the hand or manipulated. Besides this 
segmentation ambiguity, there is a large spatio-temporal variability of how hand trajectories  
reach different object types and the appearance of a hand trajectory in a 2D image will also 
heavily vary according to the position of the object and the view-angle.  Finally, the mutual 
occlusion between the hand and the object causes even more difficulties for object detection 
and tracking.
In the present approach we will focus on two problems in the recognition of manipulative 
actions: (i) the segmentation ambiguity and (ii) spatio-temporal variability of the hand 
trajectory. We propose a unified graphical model with a two-layered recognition structure. 
On the lower layer, the object-specific manipulative primitives are represented as Hidden 
Markov Models (HMM) which are coupled with task-specific Markovian models on the 
upper level. A top-down processing mechanism predicts which kinds of objects are relevant 
according to the currently recognized tasks. Thereby, a dynamic attention mechanism is 
realized that reduces the number of considered objects and simplifies the segmentation task 
of the hand trajectory. Furthermore, the manipulative primitives are spotted by a particle 
filter (PF) realized HMM matching process. Due to an explicit modeling of an action 
abortion and resampling step, this method is more promising than traditional HMM 
forward-backward (Rabiner, 1990) processing and also could achieve  more flexible 
transitions between model states than condensation-based trajectory recognition (Black & 
Jepson, 1998). Afterwards, the results are fed back into the task level in order to predict the 
following primitives closing the bottom-up and top-down cycle. 
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Fig. 1. The Bielefeld Robot Companion (BIRON) 

In the following part of this chapter,  we will firstly review some related work in the field of 
human action and activity recognition. Then, we will present our system architecture which 
takes the temporal as well as the spatial context into account. The recognition of human 
actions is realized in a tightly coupled loop of bottom-up and top-down processing. We start 
by describing the low-level image processing of the bottom-up part. Then, we discuss how 
the object-specific manipulative primitives are spotted under spatio-temporal variability. 
The modeling of the manipulative task lies on top.  The other half of the loop combines the 
top-down task knowledge with the bottom-up processing scheme.  The experiment section 
presents the results on a corpus of 8 persons performing 3 different tasks consisting of 
different sequences of primitive actions. Finally, the conclusion will give some discussion on 
the approach and the possible future work. 

2. Recognition of Human Movements, Activities, and Actions 

A robot that is autonomously moving and acting in a human environment needs to 
understand and predict human behavior to a certain degree. While small automatic vacuum 
cleaners will mainly deal with collision avoidance for safety issues, larger movable robots, 
like the Bielefeld Robot Companion (Haasch et al., 2004) in Fig. 1 which is based on a 
Pioneer peopleBot platform, need to respect human activities and situations beyond 
physical predictability leading to the recognition of human intentions.  This starts by 
considering social spaces, detecting when a person does not want to be disturbed, and ends 
in solving cooperative tasks with a human partner. The same accounts for human-robot 
communication starting with the problem to detect if and when a person communicates 
with the robot (Lang et al. 2003), via the interpretation of a communicative gesture (Pavlovic 
et al. 1997) to the interpretation of the action context of an unspecific verbal statement 
(Wachsmuth & Sagerer, 2002; Ballard & Yu, 2003).  The reason for the increasing complexity 
in the interpretation of human motion patterns is the underlying factor of human intentions. 
The meaning of very similar human motions heavily depends on different levels of  human 
intention. In this regard, Fleischman and Roy (2005) argue that learning the meaning of 
verbs is much harder that learning nouns. They distinguish between two different kinds of 
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ambiguities. (1) The vertical ambiguity refers to a possible causal chain of intentions, e.g. in 
order to get a cup, I need to find a cup, open the cupboard, and grab the handle. Thus, the same 
action ‘the hand moves to the handle of the cupboard’ could be named on different levels of 
intention. (2) The horizontal ambiguity resambles that the high level interpretation could be 
ambiguous. For example, the same action as before could be interpreted as clean the cupboard 
instead of get a cup.
The different levels of intention have a different scope of interpretation in time and space. 
The physical prediction can be managed on a subsymbolic level considering the current 
trajectory of the human movement. Modeling social spaces needs at least some kind of 
representation of the human’s mental state, while the recognition of actions like the opening 
of a cupboard needs to consider the relation of a human pose with regard to environmental 
objects and the changes of the object states over time.    
The concept of different interpretation scopes directly fits Bobick's  categorization of motion 
recognition: movement, activity, and action (Bobick, 1998). While movements can be 
characterized by reoccurring trajectories with a dedicated symbolic meaning, the 
interpretation of activities needs the extension of the scope in time in order to infer a higher 
level of intention. It represents larger-scale events, which typically include interactions with 
the environment and causal relationships. Actions involve a state change of the environment 
extending the scope into space.  
So far we did not focus on the kind of  body movement performed by a human. A large 
amount of work is dedicated to whole body movements. An overview of several approaches 
is given by Gavrila (1999).  Spatial as well as temporal contexts are considered by Intille & 
Bobick (2001) in terms of multiperson actions and Fleischman, Decamp, & Roy (2006) in 
terms of places in an living environment. However, these approaches are mainly based on 
top-down views from surveillance cameras. In the robotics field most work is dedicated to 
gestures, i.e. intentional hand/arm movements that are mainly used for human-computer or 
human-robot interaction. A taxonomy  of  these is given by Pavlovic, Sharma, & Huang 
(1997). They distiguish between manipulative and communicative gestures, on the one 
hand, and unintentional movements, on the other hand. Manipulative gestures are used to 
act on objects in the environment and, thereby, constitute actions, while communicative 
gestures are mainly characterized by a temporally structured activity. In the following, we 
will focus on manipulative gestures. 
The recognition of manipulative gestures is one of the most complex tasks as the system 
needs to extract relational features between the human motion and the environmental 
objects in cases of a high degree of occlusion. Therefore, most related work on manipulative 
action recognition simplifies the setting to a certain degree. A common scenario that is well 
motivated from domestic environments assumes that all relevant actions are performed on a 
table top (e.g. preparing a meal, decorating a table, performing typical office work, watering 
flowers).  Thus, we assume that a mobile robot moves to a place around the table where it is 
able to observe the sequence of actions in focus. 
In order to recognize these, more sophisticated schemes are needed that explicitly model 
contextual factors defining actions. Jo used a Finite State Machine (FSM) for modeling 
possible state transitions in the manipulative gesture recognition (Jo et al., 1998). Bobick 
developed a PNF (past-now-future) constraint network to model the temporal structure of 
actions and subactions (Pinhanez & Bobick, 1998). These typically are pure semantic 
approaches, which have not used explicit motion models. In Chan's work, a simple feature 
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vector is used for modeling the interaction primitive, e.g. approach. The transition of the 
semantic primitives are modeled by HMMs (Chan et al., 2004). Because of the early symbolic 
abstraction of trajectory information, this method can only be applied in a restricted 
scenario.  An approach that actually combines both types of information, sensory trajectory 
data and symbolic object data, in a structured framework is Moore's concept of objectspaces 
(Moore et al., 1999). Here a camera mounted on the ceiling observes a human interacting 
with different objects. Certain image processing steps are carried out to obtain image-based, 
object-based, and action-based evidences for objects and actions, which are integrated using 
Bayesian networks. Action primitives are recognized from hand trajectories using HMMs 
that are trained offline on different activities related to the known objects.  Our approach 
uses a similar object represention scheme but goes beyond this work because the spotting of 
meaningful parts in longer hand trajectories is seriously considered and a combined top-
down and bottom-up mechanism solves the object attention problem. Furthermore, the 
proposed model enables the system to infer high-level intentions in the manipulative 
gesture detected.  
While these approaches center a context area around detected objects, hand-centered 
methods define context areas relative to a hand trajectory. Fritsch et al. (2004) put forward 
such an approach. In this case, the trajectory information is augmented in each time step by 
contextual objects that are searched on-line using the context area bound to the moving 
hand. A hierarchical structure is used to model the manipulative sequence by Li et al. (2005). 
In both works, the segmentation and spatio-temporal variability problems are coped with a 
particle filter.  But the hand trajectory template, which is used as the primitive, lacks the 
capability of generalization. For representing all possible hand trajectories in manipulation, 
a huge number of templates are needed.  
Another specific application is presented by Yu & Ballard (2002). They argue that the eyes 
guide the hand in almost every action or object manipulation. In their work, the eye motion 
is measured by a head-mounted eye tracker and used for the segmentation of hand 
trajectories and the detection of objects. HMMs are used for action recognition which is 
purely based on trajectory information. Then object and action information is integrated on 
a symbolic level using action scripts. 

3. System Architecture 

In contrast to purely trajectory-based techniques, the presented approach is called object-
oriented w.r.t. two different aspects: it is object-centered in terms of trajectory features that 
are defined relative to an object, and it uses object-specific models for action primitives. In 
our definition, the manipulative action has two semantic layers. The bottom layer consists of 
the object-specific manipulative primitives. Each object has its own set of manipulative 
primitives because we argue that different object types serve different manipulative 
functions and even manipulations with the same functional meaning are performed 
differently on different objects. The top layer is used for representing the manipulative task, 
which are modeled by typical transitions between certain manipulative primitives. The 
system architecture is shown in Figure 2. The architecture realizes a combined bottom-up 
top-down processing loop that utilizes the task-level prediction of possible primitives in 
order to restrict the object types possibly detected as well as the action primitives possibly  
recognized. In the bottom-up path, according to the top-down prediction a processing 
thread is created for each detected object that consists of a trajectory segmentation, a feature 
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computation, and an HMM-based recognition step. Thus, all three steps are performed 
differently for each object in parallel and the hand trajectory information is passed to each 
object-centered processing thread. The parallel processing for the objects avoids the 
ambiguity of the trajectory context if there are many objects in the scene. In the following 
sections, we will show how the object-specific manipulative primitives are detected in each 
thread, are combined for  task recognition and effect the top-down process.  

Fig. 2. The system architecture and the processing flow  

4. Feature Extraction

The manipulative gesture is different to the face-to-face interactional gesture because the 
former reflects the interaction between the human’s hand and the objects while the latter is 
typically characterized by a meaningful trajectory of the pure hand movement, e.g. the 
American Sign Language (Starner & Pentland 1995). Therefore, besides tracking the 
performing hand over time, the objects in the scene are also detected. For modeling typical 
object manipulations like “take” or “pour”, the selected features describe the relative 
movements between the hand and the objects in 2D images. The reason why we are not 
using 3D representation is two fold. On the one hand, the 3D tracking of a person would 
need an elaborated body model and its tracking in mono-camera images is still a field of 
active research (Schmidt et al., 2006).  Better tracking results can be achieved by using stereo 
cameras, which poses further constraints on the hardware setting. On the other hand, we 
argue that the perspective of a robot with regard to manipulative actions performed on a 
table top (as described in Section 2) can be assumed to be roughly stable, if the robot is able 
to chose an appropriate position relative to the human actor. In the following, this section 
will explain the computation for locating the hand and objects in the images and the 
construction of the interaction feature vector. 

4.1 Hand Detection and Tracking 

The hand is detected in a color image sequence by an adaptive skin-color segmentation 
algorithm (Fritsch, 2003) and tracked over time using Kalman filtering.  Figure 3 shows the 
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screen shot of the processing from left to right: the raw image, the thresholded image 
indicating the skin-color pixels, and the region tracking. Currently only single hand 
manipulations are assumed. So the bigger skin-color region is labeled as face. The smaller is 

the hand. The hand observation 
hand
tΟ  is represented by the hand position tyx hh ),(  at time 

t .

Fig. 3. The screen shots of hand tracking  

4.2 Pre-knowledge and Detection of Object 

Because the features of the manipulative gesture are based on the relative movements, a 
reliable detection of objects is crucial for the overall system performance. In order to avoid 
occlusion problems with interacting hands, we assume that a standard object recognizer, 
like those using Scale Invariant Feature Transform (SIFT) (Lowe, 2003), is applied on 
the static scene. Then, object-dependent primitive actions are always defined with regard to 
the object that is approached by the hand trajectory. If a moved object is applied to another 
object, the second object defines the object context. As we can have several static objects in 
the scene, the overall object observation vector contains multiple objects:  

},,,,{ 1

obj
L

obj
i

objobj ΟΟΟ=Ο   (1) 

with

),,,,( whyx
obj
i ooIDoo=Ο   (2) 

The observation vector of a detected object obj
iΟ  contains  its position ),( yx oo , a unique 

identifier ID for each different object type in the scene and its height ho  and width wo .

4.3 Segmentation of Trajectory 

It is common sense that the relative movement between hand and object contains less 
interaction features when they are far away from each other. A vicinity of an object is 
defined that is centered in the middle of the object detected. It is limited by the ratio β  of its 
radius and the object size, which is shown by a blue circle in Figure 4. Based on this vicinity, 
a pre-segmentation step of the hand trajectory is performed  that ignores irrelevant motions 
for primitive recognition. Considering the possible occlusions in manipulation and the 
uncertainty in moving an object, a segment is started when the hand enters the vicinity or 
when an object is detected and the hand is already in the vicinity (object put down into the 
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scene). It ends when the hand goes out of the object's vicinity or when the object is lost after 
the hand moves away (object has been taken). As a consequence, the trajectory is segmented 
differently based on the different objects in the scene. To handle this multi-observation 
problem, one processing thread is started for each detected object. In the following, the 
processing in a single thread will be introduced. There, the final segmentation is directly 
coupled with the recognition step.  

Fig. 4. The interaction feature vector 

4.4 Interaction Feature Vector 

During a manipulative action, the hand movements in the object vicinity can indicate an 
intended physical contact with object i , e.g. the hand will move towards the cup and slow 
down when the person wants to take it.  Thus in the processing thread i , the interaction of 

the hand and the object is represented by a five-dimensional feature vector fV  that is 

calculated from 
handΟ  and 

obj
iΟ . It contains the features: magnitude of hand speed v ,

change of the hand speed vΔ , change of speed direction αΔ , distance r  between the object 
and the operative hand, as well as the angle γ  of the line connecting object and hand 
relative to the direction of the hand motion.  

),,,,( γα rvvV f ΔΔ=   (3) 

The parameter v , vΔ , and r  are all scaled by object size. So the features are invariant with 
regard to translations, scale, and rotations.   

5. Manipulative Primitive Detection 

Although an object vicinity is defined for cutting away the hand trajectories which are less 
relevant to object manipulation, it is a coarse segmentation. The relative movements of the 
hand in an object vicinity can also contain both a typical interaction and some meaningless 
part. Consequently, the typical hand-object interactions, which we named object-specific 
manipulative primitive, have to be detected in a longer trajectory. The major methods include 
Dynamic Time Warping (DTW) (Alon et al., 2005), Artificial Neural Networks (ANN) 
(Kjeldsen & Kender 1995), and Hidden Markov Models (HMM) (Morguet & Lang, 1998; 
Lee & Kim, 1999). The DTW can to a certain extent cope with spatio-temporal variability. 
But as a template-based dynamic matching technique, it needs a large number of templates 
for a range of variations. ANN can achieve good detection results on static patterns, 
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including fixed length trajectories. It is not suited for the manipulative primitives which can 
have huge temporal variance. The HMM is another well-known technique for modeling 
sequential signals. By defining the transition between states and the state dependend 
observations in a probabilistic way, variations can be coped with to a certain degree. It is 
effectively used in speech recognition, handwriting recognition and human activities 
recognition. However, the standard forward algorithm to calculate the probabilities of the 
HMM candidates given the observation has the assumption that the whole sequence is 
emitted by one HMM. In order to spot the partition which conforms to an HMM from a long 
observation, some approaches, e.g. HMM-based threshold model (Lee & Kim, 1999) and 
Normalized Viterbi algorithm (Morguet & Lang, 1998) were put forward. Because the 
output score of the continuous observations of a given HMM will permanently increase or 
decrease, a window is used to tune the weights of the observation.  Nonetheless, the fixed 
length of the window conflicts with the temporal variability of the signal. Recently the 
Sequential Monte Carlo (SMC) method also named Particle Filter (PF) is getting more and 
more focus in the pattern recognition society, which allows an on-line approximation of 
probability distributions using samples (particles). It has been used for template-based 
trajectory matching (Blake & Jepson, 1998). In order to keep the spatio-temporal variability 
of HMMs and use the advantage of PF on tracking the models with weighted particles, a PF 
realized HMM matching method is implemented to detect object-specific manipulative 
primitives. This process is building the bridge between the low-level image processing and 
the task knowledge.

5.1 HMM for Manipulative Primitive 

The object-oriented manipulative primitives are modeled by ergodic HMMs. Different to the 
normal parameter set ),,( Π= BAλ  of an HMM, a terminal probability E  is added. It 
reflects the terminal probability of an HMM given a hidden state is . So the whole set 
consists of: 
• })({ 1 iii sqP ===Π ππ ,   initial probability of state is .

• })({ 1 itjtijij sqsqPaaA ==== +
,  transition probability from state is  to 

js .

• })()()({ itktii sqvoPkbkbB ==== , probability of observing vk  given hidden state is .

• })({ iendii sqPeeE === ,  terminal  probability of state is .

Considering the small amount of training data, we use discrete HMMs. The whole feature 
space is discretized into 2x 2 x 4 x 3 =48 cells based on the following quantized dimensions:  

Parameters Quantization 

v thresholdthreshold vv ≥< ,

vΔ 0,0 ≥<

αΔ 90,90 ≥<

r ]43240[ ββββ
γ 90,90 ≥<  if thresholdvv ≥

Table 1 Vector quantization of the interaction feature space 
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They define the observation states for the following HMMs. The angle γ  between the object 
-hand connection line and the direction of the hand motion is quantizied conditioned on v
because it has much noise when the hand speed is very low. The HMM parameter set is  
learned from manually segmented trajectories with the Baum-Welch algorithm, ie  is 
calculated similar to iπ , except using the last states.  

5.2 PF-based HMM Matching 

In order to detect the primitives from the pre-segmented trajectories, a PF called Sampling 
Importance Resampling (SIR) is used, better known as Condensation introduced by Isard 
and Blake (Isard & Black 1996). Figure 2 shows a two time-slice Dynamic Bayesian Network 
(DBN) which indicates the dependency structure of the probabilistic model. For each one in 
the L  objects, the matching of the M  HMMs and the observation are achieved by temporal 
propagation of a set of weighted particles:  

)},(),,{( )()()1()1( N
t

N
ttt wSwS   (4) 

with

},,{ )()()(0)( i
t

i
t

i
t

i
t eqpS =   (5) 

The number of particles is N . The sample )(i
tS  contains the primitive index )(0 i

tp , the 

hidden state )(i
tq , and the terminal state of this primitive )(i

te  at time t  (see Figure 5). The 
resampling step reallocates a certain fraction of the particles with regard to the initial 
distribution Π . Consequently, the weight )(i

tw  of a sample can be calculated from  

Fig. 5. A Dynamic Bayesian Network represents the dependency structure of two time slices 
in the recognition model. Each object-centered processing thread corresponds to one of the 
L  plates in the dependency model. K  is the number of different tasks modeled in the 
system and M  is the number of possible primitives which each corresponds to one state of 
the variables 0

tp  and 1

tp , respectively. The upper index of these variables denotes the 
primitive vs. task level. 
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The )( )(i
tt Sop  in it is the observation probability of to  given )(i

tq  and HMM )(0 i
tp . The 

propagation of the weighted samples over time consists of three steps:

Select: Selection of MN −  samples )(

1

i
tS −  according to their respective weight )(

1

i
tw −  and 

random initialization of M  new samples. That means some particles which have high 
weights will be selected multiple times and some particles which have low weights will not 
be selected at all. 

Predict: The current state of each sample )(i
tS  is predicted from the samples of the select 

step according to the graphical model given in Figure 5. The terminal state )(

1

i
te −  is a bi-

valued variable, 0 means the primitive is continuing and 1 means the primitive ends here. So 
if )(

1

i
te −  is 0, the next hidden state )(i

tq  is sampled according to the transition probability of the 

HMM of primitive )(

1

i
tq −  and the primitive index )(0 i

tp  keeps the same as  )(0

1

i
tp − . If the 

terminal state )(

1

i
te −  is 1, the primitive index )(0 i

tp  will be sampled according to the current 

possible primitives of this object. Then the hidden state )(i
tq  is sampled according to the 

initial probability of the HMM of the new primitive )(0 i
tp . At the end of this step, the 

terminal state  of this particle )(i
te  is sampled based on the terminal probability of the 

current primitive state )(i
tq .

Update: Determination of the weights )(i
tw  of the predicted samples )(i

tS  using Eq. 6.

The recognition of a manipulative primitive is achieved by calculating the end-probability
endP  that a certain HMM model ip  is completed at time t:  

=
n

n
titend wpP )(

, )( , if )(n
ti Sp ∈   (7) 

A primitive model is considered recognized if the probability )(, ktend pP  of the primitive 

model kp  exceeds a threshold 0

thp  which has been determined empirically.  
The resampling step in the particle propagation is able to adapt the starting point of the 
model matching process if the beginning of the primitive does not match the beginning of 
the segment. The  end-probability gives an estimation of the primitive's ending point. This 
combination to a certain extent solves the problem of the forward-backward algorithm 
which needs a clear segmentation of the pattern.  
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6. Task Level Processing

6.1 Model of Tasks 

The manipulative tasks are modeled as the first-level Markovian process which is the same 
as Moore's definition (Moore et al., 1999). Although this assumption violates certain domain 
dependencies, it is an efficient and practical way to deal with task knowledge. In the model 

iΛ  for a manipulative task i , a set of possible manipulative primitives 
1

iP  are defined, e.g., 
in the “prepare tea” task, the primitives “take cup”, “take tea can” could appear but not 
“take milk”. Because of the high effort needed for recording a huge mount of task 
sequences, the number of training examples for each complete task is too low for robustly 
estimating transition probabilities. Therefore, we model a task by a set of possible primitive 
pair  transitions similar to a word pair grammar in automatic speech recognition. The set of 

transition rules 
1

iA , the possible start symbols 
1

iΠ , and the set of possible end symbols 
1

iE  is 
learned from the output of the primitive recognition layer on a training set by thresholding 
the frequency of pairs observed in sequences of action primitives (see Section 7.2 for more 
details). Suppose the result from the manipulative primitive recognition is the sequence 

11

1 ,, tpp . To calculate the acceptance of a task ),,,( 1111

iiiii EAP Π=Λ , only the primitives 

which are in the primitive list of the task iΛ will be chosen because of the possible insertion 
in the primitive recognition.  

},,|{)1,|,( 1111

1

1*1

1

1111

1 1 ititAijt EpppptjPppp
i

∈Π∈→Ρ∈=∈   (8) 

where Ρ  denotes the possible sequences from primitive 
1

1p  to 
1

tp  while considering 
transitions in 1

iA . Eq. 8 can easily be evaluated according to the parameter set iΛ .

6.2  Top-down Process  

Because of the object-specific primitive definition and its parallel processing for each 
affected object, the system confronts an attention problem when there are many objects 
appearing in the scene, simultaneously. In order to solve this problem, a top-down process 
is introduced, in which the possible subsequent primitives are predicted on the ground of 
the active task models and the previous results from the manipulative primitive recognition. 
This prediction is similar to the computation of a look ahead symbol in parsing strategies. 
For the prediction step, different parsing alternatives are considered during the HMM 
matching process. For all primitives that gain an end probability 0)(, >itend pP  a lookahead 
symbol is generated. If a primitive has been recognized this primitive is eliminated as a 
lookahead symbol. Because the predicted action primitives are specific for certain object 
types, the set of the next possibly manipulated object types can be calculated and be passed 
to the object detection component. This realizes a task driven attentional cue for early 
processing steps of the system (Figure 2). Additionally, the expectations from the predicted 
action primitives are used to restrict the HMMs applied in the PF based matching process.  
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7. Experiments and Results 

In order to evaluate the quality of the manipulative gesture recognition, a scenario in an 
office environment has been designed as shown in Figure 6. A person is sitting behind a 
table and manipulates the objects that are located on it. She or he is assumed to perform one 
of three different manipulation tasks: 
(1) water plant: take cup, water plant, put cup; 
(2) prepare tea: consists of take/put cup, take tea can, pour tea into cup, put tea can;  
(3) prepare coffee: consists of take/put cup, take milk/sugar, pour milk/take sugar into cup, 
put milk. 
In the experiment, each task is performed 4-5 times by 8 different persons resulting in 36 
sequences for each task and a total of 108 sequences. The images are recorded with a 
resolution of 320x240 pixels and with a frame-rate of 15 images per second. The object 
recognition results have been labeled because the evaluation experiment should concentrate 
on the performance of the action and task recognition. The object in the hand is ignored so 
that pour milk into cup and pour tea into cup are the same primitive actions.  The scenario is 
restricted in so far that we assume a static camera, a known configuration of objects, and a 
camera view that is roughly orthogonal to the relevant movements. 

Fig. 6. The office scenario used in the experiment. 

7.1 Manipulative Primitive Recognition 

The first evaluation is used to test the performance of the object-oriented manipulative 
primitive recognition. There are five different objects used in the experiment: tea can, milk, 
sugar, cup and plant. Figure 7 shows the primitives defined for each object type. The 
evaluation is done for all segments computed by the pre-segmentation step (see Section 4.3). 
These segments either contain a real manipulative primitive action which we call positive 
segments (PS) or contain just a hand passing by an object which we call negative segments 
(NS). For the positive segments, we calculate the false negative (FN) rate. For negative 
segments, the false positive (FP) rate is calculated. In order to achieve a good system 
performance both rates should be low because both kinds of errors would seriously affect 
human-robot interaction. We randomly divided the 108 whole task sequences into a training 
set of 60, and a test set of 48 sequences. Because of the low number of training examples, we 
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run the Baum-Welch algorithm used for the HMM learning procedure 10 times with 
random initialization and give a standard deviation for the FN and FP rates. The results are 

computed using the parameter setting:  500=N , 50=M , 2.00 =thp , and 3=β . From the 
results shown in Figure 7, it could be found that the “put” primitives are recognized with 
lower FN rate than the “take” and “pour” primitives because the variations of the latter two 
are much higher from person to person. Figure 8 shows the end probabilities of different 
manipulative primitives in a prepare tea task. The horizontal line above zero is the 
recognition threshold and the temporal periods which are coloured  indicate that the hand is 
in the object vicinity at that moment.    

Fig. 7. The recognition results of the object-specific manipulative primitives in both positive 
and negative segments. 

Fig. 8. The end probabilities of the object-specific manipulative primitives in a prepare tea
task
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7.2 Manipulative Task Recognition 

The second evaluation assesses the overall system performance. A manipulative task 
consists of the manipulative primitive sequence. However the ordering of the sequence is 
neither pre-determined nor completely fixed. For example some people may take sugar 
before taking milk, some will do it the other way around. But there probably will be an 
ordering between taking the cup and the watering action which needs to be learned from 
the data. For learning the possible transition pairs of each task model, the data set is divided 
into the set of 20 observation sequences, that was already used for learning the primitive 
action models, and a set of 16 sequences that are used for a one-leave-out experiment. Thus, 
each task model is learned from 35 task sequences in each experiment. The possible word 
pair transitions are extracted from the training data by a frequency threshold. The task  

Fig. 9. The recognition results of the manipulative tasks with and with out top-down 
processing. 

recognition results of the whole system are compared with (TD) and without (no TD) the 
top-down attention processing (see Figure 9). The FN rate clearly shows a significant drop in 
case of top down processing for prepare tea and prepare coffee. Because sometimes an expected 
primitive was misrecognized in a way that was not covered by the task grammar, the 
rejection of these tasks caused relatively high FN rates but nearly no substitution errors 
(Sub.). The processing time for a 180-frame ``prepare coffee'' sequence with the former 
method is 54s running on MATLAB, which is much lower than the 86s needed by the pure 
bottom-up processing.
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8. Conclusion 

The recognition of manipulative actions and tasks is an essential component for the natural, 
pro-active, and non-intrusive interaction between humans and robots. However, most 
techniques for the recognition of symbolic, interactional or referential gestures cannot be 
transferred because they ignore the object context and assume an object independent 
characteristic of the hand trajectory. Other approaches that focus on action recognition 
either use a pure semantic approach without considering motion models or simplify the 
trajectory segmentation problem in a pure bottom-up process.  
The presented approach overcomes several of these deficiencies. The contextual objects are 
used for a pre-segmentation of the hand trajectory; the manipulative action primitives are 
spotted by a particle filter approach that matches object specific HMMs in a more flexible 
way than the traditional forward-backward algorithm; tasks are defined by a set of possible 
transition rules similar to a word pair grammar that is automatically extracted from a small 
test set. By calculating a set of lookahead symbols on the task level, a task-driven attention 
filter is realized that tightly couples bottom-up and top-down processing. We were able to 
show first experiments that underline the potential of the presented approach. The action 
primitives were recognized quite robustly. The top-down attention filter significantly 
improves the computation time as well as the recognition performance.  
Further work needs to concentrate on several issues. In terms of feature description neither 
pure symbolic nor trajectory-based characterizations will be general enough to describe the 
huge variety of manipulative actions. Trajectory-based features allow to distinguish actions 
that do not result in observable state changes of the objects, but suffer from large trajectory 
variations. The proposed object specific motion-models account to these variations to a 
certain degree. How to deal with multiple representations on both symbolic and sub-
symbolic levels is still an open research question. The coupling of motion models and object 
types also leads to another important aspect of actions: the concept of object affordances. 
The observed shape and function of an object activates an expected set of hand trajectories 
and vice versa. We expect that this kind of coupling will be a key issue both in 
categorization of objects and learning new action verbs. Another aspect is the development 
of more sophisticated task models that need to include human intentions on multiple scopes 
of time and space. Finally, more sophisticated experiments are needed to evaluate current 
action recognition approaches. Appropriate benchmark datasets for manipulative action 
recognition are currently not available and most approaches  focus on their specific 
application domain.
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1. Introduction     

Image matching, or comparing images in order to obtain a measure of their similarity, is a 
fundamental aspect of many problems in computer vision, including object and scene 
recognition, content-based image retrieval, stereo correspondence, motion tracking, texture 
classification and video data mining. It is a complex problem, that remains challenging due 
to partial occlusions, image deformations, and viewpoint or lighting changes that may occur 
across different images (Grauman & Darrell, 2005).
Image matching can be defined as “the process of bringing two images geometrically into 
agreement so that corresponding pixels in the two images correspond to the same physical 
region of the scene being imaged” (Dai & Lu, 1999). Therefore, according to this definition, 
image matching problem is accomplished by transforming (e.g., translating, rotating, 
scaling) one of the images in such a way that the similarity with the other image is 
maximised in some sense. The 3D nature of real-world scenarios makes this solution 
complex to achieve, specially because images can be taken from arbitrary viewpoints and in 
different illumination conditions. Instead, the similarity may be applied to global features 
derived from the original images. However, this is not the more efficient solution. Besides, 
these global statistics cannot usually deal with real-world scenarios because they do not 
often give adequate descriptions of the local structures or discriminating features which are 
present on the image (Grauman & Darrell, 2005). 
Other solution to the image matching problem is to describe the image using a set of 
distinguished regions (Matas et al., 2002). These regions must own some invariant and stable 
property in order to be detected with high repeatability in images taken from arbitrary 
viewpoint. Then, the matching between two images is posed as a search in the 
correspondence space established between the associated sets of distinguished regions. If 
each region is described by a vector of image pixels, then cross-correlation can be used to 
obtain a similarity value between two regions (Mikolajczyk & Schmid, 2005). However, due 
to the high dimensionality of such vector, the generation of the correlation space typically 
presents a high computational cost. In order to reduce the computational complexity, the 
number of tentative correspondences can be limited by computing local invariant 
descriptors for distinguished regions (Matas et al., 2002; Grauman & Darrell, 2005). These 
descriptors can be also employed to estimate the similarity value between two regions. 
In this paper, we have adopted an approach which describes the image using a set of 
distinguished regions and exploits local invariant descriptors to estimate the similarity 
value between two distinguished regions belonging to different images. Thus, there are four 
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main procedures involved in the image matching process: i) detection of distinguished 
regions, ii) local invariant description of these regions, iii) definition of the correspondence 
space, and iv) searching of a globally consistent subset of correspondences. This subset of 
correspondences will permit to associate a similarity score to the images being matched. The 
main contribution of this work is the introduction of a new set of distinguished regions, the 
so called curvilinear regions.
The choice of the location and shape of the distinguished regions can be considered as a 
crucial issue in these image matching approaches (Matas et al., 2002). In a typical case, when 
images are taken from different viewpoints, local image deformations cannot be realistically 
approximated by translations and rotations, and it is required a full affine model. Then,  
correspondence cannot be established by comparing regions of a fixed shape like rectangles 
or circles since their shape is not preserved under affine transformation. Region shape must 
depend on the image data (Dai & Lu, 1999; Matas et al., 2002). In our case, the proposed 
method exploits a particular image structure. It is based on the presence, in a typical image, 
of numerous objects which can be built using cylinders or generalized cylinders (Biederman, 
1987). The main disadvantage of the method is to use shapes which must be explicitly 
present in the image, so it depends on the presence of these specific structures in the scene. 
On the contrary, curvilinear regions automatically deform with changing viewpoint as to 
keep on covering identical physical parts of a scene. 
This chapter is organised as follows: Section 2 describes related work. The curvilinear region 
detector is presented in Section 3. Section 4 describes the contour-based descriptor 
computed for each extracted region. This descriptor is compared to other similar approaches 
in Section 5.1. The correspondence algorithm is presented in Section 5.2. This Section also 
describes some experimental results and finally, Section 6 discusses extracted conclusions 
and future work. 

2. Related work 

The development of algorithms which use a set of local distinguished items for image 
matching can be traced back to the works of Moravec (1981) and Harris and Stephens (1988). 
Although the initial applications of both approaches are for stereo and short-range motion 
tracking, it can be considered that a similar strategy has been later extended to deal with 
more difficult problems. Thus, Zhang et al. (1995) propose to match Harris points over a 
large image range by using a correlation window around each point. The Harris point 
detector selects any image location that has large gradients in all directions at a 
predetermined scale. Outliers are then removed by solving for a fundamental matrix 
describing the geometric constraints between the two views of a rigid scene and removing 
matches that did not agree with the majority solution. 
Local invariant feature matching is extended to general image recognition problems in 
which a feature is matched against a large set of images by Schmid and Mohr (1997). This 
approach also employs Harris points as distinguished items, but rather than matching with 
a correlation window, they use a rotationally invariant descriptor of the local image region. 
The 2D translation and 2D rotation invariant features are extracted from the intensity 
pattern in fixed circular regions around Harris points. Invariance under scaling is handled 
by including circular regions of several sizes. This allows features to be matched under 
arbitrary orientation change between the two images. Besides, they demonstrate that 
multiple feature matches could accomplish general recognition under occlusion and clutter 
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by identifying consistent clusters of matched features. This method has been modified to 
deal with very large scale changes (Dufournaud et al., 2000) or with colour images 
(Montesinos et al., 2000). 
The Harris point detector is very sensitive to scale changes, so it does not provide a good 
basis for matching images of different sizes. In any case, representations that are stable 
under scale change have been proposed. Crowley and Parker (1984) developed a detector 
that identifies peaks and ridges in scale-space and links these into a tree structure. The tree 
structure can then be matched between images with arbitrary scale change. The Harris point 
local feature approach has been modified by Lowe (1999) to achieve scale invariance. 
Circular regions that maximise the output of a difference-of-Gaussian (doG) filters in scale-
space are employed. More recent work on graph-based matching by Shokoufandeh et al. 
(1999) provides more distinctive feature descriptors using wavelet coefficients. Harris-
Laplace regions (Mikolajczyk & Schmid, 2001) are also invariant to rotation and scale 
changes. These points are detected by the scale-adapted Harris function and selected in 
scale-space by the Laplacian-of-Gaussian operator. Hessian-Laplace regions (Lowe, 2004) 
are localised in space at the local maxima of the Hessian determinant and in scale at the local 
maxima of the Laplacian-of-Gaussian. This detector obtains higher localisation accuracy 
than the doG approach and the scale detection accuracy is also higher than in the case of the 
Harris-Laplace detector (Mikolajczyk & Schmid, 2005). The problem of identifying an 
appropriate and consistent scale for feature detection has been studied in depth by 
Lindeberg (1993, 1994). 
As it is commented above, when images are taken from different viewpoints, image regions 
are subject to affine transformations. The affine transformation includes rotation, scaling, 
skewing and translation (Bala & Cetin, 2004). It preserves parallel lines and equispaced 
points along a line. Therefore, it has been used to approximate the perspective 
transformation in some cases. Local features have been extended to be invariant to full affine 
transformations. Harris-affine regions (Mikolajczyk & Schmid, 2004) and Hessian-affine 
regions (Mikolajczyk et al., 2005) are invariant to affine image transformations. However, 
they start with initial feature scales and locations selected in a non-affine-invariant manner. 
Then, the affine neighbourhood is determined by the affine adaptation process based on the 
second moment matrix. Baumberg (2000) has proposed an invariant descriptor which 
cannot deal with scale changes. Thus, these regions are invariant under rotation, stretch and 
skew, but scale changes are dealt with by applying a scale-space approach. The error on the 
scale also influences the other components of the transformation. Tuytelaars and Van Gool 
(2004) propose two types of affine-invariant regions, one based on a combination of Harris 
points and edges and other one based on image intensities. Matas et al. (2002) describe the 
Maximally Stable Extremal Regions (MSER). They are extracted with a watershed like 
segmentation algorithm. An important issue that affine invariant approaches must take into 
account is the sensitivity to noise. Thus, affine features are sensitive to noise, so in practice 
they have typically lower repeatability than the scale-invariant features (Mikolajczyk, 2002). 
To deal with this problem, the local descriptor must allow relative feature positions to shift 
significantly with only small changes in the descriptor. This not only allows the descriptors 
to be reliably matched across a considerable range of affine distortion, but it also makes the 
features more robust against changes in 3D viewpoint for non-planar surfaces (Lowe, 2004).  
Many other features have been proposed. Some of them make use of region boundaries, 
which should make them less likely to be disrupted by cluttered backgrounds near object 
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boundaries. Thus, Matas et al. (2002) have shown that their MSERs can produce large 
numbers of matching features with good stability. Mikolajczyk et al. (2003) uses local edges 
while ignoring unrelated nearby edges, providing the ability to find stable features even 
near the boundaries of narrow shapes superimposed on background clutter. Nelson and 
Selinger (1998) employ local features based on groupings of image boundaries. Finally, Pope 
and Lowe (2000) use features based on the hierarchical grouping of image boundaries. A 
curvilinear-based region detector has been proposed by Deng et al. (2006). It starts by 
detecting curvilinear structures followed by watershed segmentation to define regions. On 
the other hand, phase-based local features have been described by Carneiro and Jepson 
(2002). These features represent the phase rather than the magnitude of local spatial 
frequencies, which is likely to provide improved invariance to illumination. Schiele and 
Crowley (2000) have proposed the use of multidimensional histograms. These histograms 
represent the distribution of measurements within image regions and they may be 
particularly useful for matching textured regions with deformable shapes. Other useful 
properties to incorporate include colour, motion, figure-ground discrimination, region 
shape descriptors, and stereo depth cues. 

3. Curvilinear regions 

3.1 Definition 

Basically, in a digital image, a curvilinear region is a set of pixels delimited by left and right 
boundaries, rl(l) and rr(l). This region can be defined by the parameter vector, {ai,wi}i=0…L,
where L is the length of the region, ai a vector defining the axis between the boundaries and 
wi the width of the curvilinear region (see Fig. 1). In a curvilinear region, the ratio between 
its average width and its total length should be less than a predefined threshold. Besides, 
left and right borders should be locally parallel, it should exist a geometric similarity around 
the region axis and the colour along this axis should be homogeneous. These items will be 
extended in next epigraphs. 

I. Symmetry around the axis 
If we define )(lwΔ  as the difference of width at both sides of the medial axis: 

|)()(|)( lwlwlw rl −=Δ                                                                 (1) 

Then, we can evaluate the error on the symmetry around the axis as: 
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Fig. 1. Curvilinear region definition 

In a curvilinear region, this error must be limited by a threshold. In our case, this threshold 
depends on two parameters, wUΔ  and wΔσ . A curvilinear region complies with: 
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II. Ratio between  average width and length 
If we define w(l) as 

)()()( lwlwlw rl +=                                                            (4) 

Then, a curvilinear region complies with: 

wUL w ⋅≥max                                                               (5) 
where Uw is a parameter of the method and Lmax is the maximum length of the curvilinear 
region. This length is obtained from all connected pixels inside the region. 

III. Left and right borders locally parallel 
The mean value of the difference of the tangents at both sides of the region, αΔ , must be 
also bounded. If  

|)()(|)( lll rl ααα −=Δ ,                                                        (6) 

then

αα Δ≤Δ U                                                                (7) 
where αΔU  is a parameter of the method.  
Section 3.5 will present an extended description of these three curvilinear region restrictions. 
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3.2 Overview of the proposed method 

The algorithm for detecting the curvilinear regions works in a simple way. Firstly, the input 
image is segmented into a set of homogeneous colour regions, so the obtained regions 
comply with the requirement that colour must be homogeneous through the region. In order 
to achieve it in a fast way, a pyramid algorithm is employed: the Bounded Irregular 
Pyramid (BIP) (Marfil et al., 2004). The BIP divides the original image into a set of connected 
regions which present an homogeneous colour. Then, every image region is checked in 
order to look for curvilinear regions by analysing its medial axis and borders. Several 
curvilinear regions can be detected in the same object. Once the curvilinear regions have 
been extracted from the input image, an extra normalisation step is applied to compensate 
for part of the deformations (Tuytelaars & Van Gool, 2004). If the curvilinear region is 
enclosed inside an elliptical region whose centre is obtained as the centre of mass of the 
region, the normalisation step transforms this elliptical region to a circular reference region 
of fixed size. Then, normalised curvilinear regions are employed as the input of a shape 
descriptor. The used shape descriptor is described in Section 4. Basically, it is a contour-
based approach to object representation which characterises the region boundary using a 
curvature function. The obtained contour descriptor is invariant to rotation and translation, 
and partially invariant to noise, scaling and skewing. 
Finally, the approach uses these high-level features for scene recognition. The recognition 
proceeds with matching individual features to a database of features from known scenes 
using a nearest-neighbour algorithm based on a curvature matching criterion. The relative 
pose of recognised features is employed to identify the image layout. Experimental results 
show that this approach to scene recognition can match images taken from different 
viewpoints if they present a similar layout, i.e. spatial distribution of curvilinear objects. The 
image matching process is described in Section 5.2. 

3.3 Image segmentation based on the Bounded Irregular Pyramid 

In our approach, image segmentation is employed to obtain a global set of image regions. 
Subsequent stages will perform the region characterisation and they will obtain the final set 
of curvilinear regions. Particularly, we have used a pyramid segmentation algorithm 
because these approaches exhibit interesting properties with respect to segmentation 
algorithms based on a single representation. Thus, local operations can adapt the pyramidal 
hierarchy to the topology of the image, allowing the detection of global features of interest 
and representing them at low resolution levels. This general principle was briefly described 
by Jolion and Montanvert (1992): “a global interpretation is obtained by a local evidence 
accumulation.” 
In order to accumulate the local evidence, a pyramid represents the contents of an image at 
multiple levels of abstraction. Each level of this hierarchy is at least defined by a set of 
vertices Vl connected by a set of edges El. These edges define the horizontal relationships of 
the pyramid and represent the neighbourhood of each vertex at the same level (intra-level 
edges). Another set of edges define the vertical relationships by connecting vertices between 
adjacent pyramid levels (inter-level edges). These inter-level edges establish a dependency 
relationship between each vertex of level l+1 and a set of vertices at level l (reduction 
window). The vertices belonging to one reduction window are the sons of the vertex which 
defines it. The value of each parent is computed from the set of values of its sons using a 
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reduction function. The ratio between the number of vertices at level l and the number of 
vertices at level l+1 is the reduction factor.
Using this general framework, the local evidence accumulation is achieved by the successive 
building of level Gl+1=(Vl+1,El+1) from level Gl =(Vl, El). This procedure consists of three steps: 

1. Selection of the vertices of Gl+1 among Vl: This selection step is a decimation 
procedure and selected vertices Vl+1 are called the surviving vertices. 

2. Inter-level edges definition: Each vertex of Gl is linked to its parent vertex in Gl+1.
This step defines a partition of Vl.

3. Intra-level edges definition: The set of edges El+1 is obtained by defining the 
adjacency relationships between the vertices Vl+1.

The parent–son relationship defined by the reduction window may be extended by 
transitivity down to the base level. The set of sons of one vertex in the base level is named its 
receptive field. The receptive field defines the embedding of this vertex in the original image. 
In a general view of the pyramid hierarchy, the vertices of the bottom pyramidal level (level 
0, also called base level) can be anything from an original image pixel via some general 
numeric property to symbolic information, e.g. a vertex can represent an image pixel grey 
level or an image edge. Corresponding to the generalization of the vertex contents, the intra-
level and inter-level relations of the vertices are also generalized.  
After building the pyramidal structure, the segmentation of the input image can be achieved 
either by selecting a set of vertices from the whole hierarchy as region roots, or by choosing 
as roots all the vertices which constitute a level of this hierarchy. In any case, this selection 
process depends on the final application and it must be performed by a higher level task. 
The efficiency of a pyramid to solve segmentation tasks is strongly influenced by two 
related features that define the intra-level and inter-level relationships. These features are 
the data structure used within the pyramid and the decimation scheme used to build one 
graph from the graph below (Brun & Kropatsch, 2003). The choice of a data structure 
determines the information that may be encoded at each level of the pyramid and it defines 
the way in which edges El+1 are obtained. Thus, it roughly corresponds to setting the 
horizontal properties of the pyramid. On the other hand, the reduction scheme used to build 
the pyramid determines the dynamics of the pyramid (height, preservation of details, etc.). 
It defines the surviving vertices of a level and the inter-level edges between levels which 
correspond to the vertical properties of the pyramid. Taking into account these features, 
pyramids have been roughly classified as regular and irregular pyramids. A regular pyramid
has a rigid structure where the intra-level relationships are fixed and the reduction factor is 
constant. In these pyramids, the inter-level edges are the only relationships that can be 
changed to adapt the pyramid to the image layout. The inflexibility of these structures has 
the advantage that the size and the layout of the structure are always fixed and well-known. 
However, regular pyramids can suffer several problems (Bister et al., 1990): non-
connectivity of the obtained receptive fields, shift variance, or incapability to segment 
elongated objects. In order to avoid these problems, irregular pyramids were introduced. In 
the irregular pyramid framework, the spatial relationships and the reduction factor are not 
constant. Original irregular pyramids presented a serious drawback with respect to 
computational efficiency because they gave up the well-defined neighbourhood structure of 
regular pyramids. Thus, the pyramid size cannot be bounded and hence neither can the time 
to execute local operations at each level (Willersinn & Kropatsch, 1994). This problem has 
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been resolved by recently proposed strategies (Brun & Kropatsch, 2003; Haxhimusa et al., 
2003; Marfil et al., 2004). 
The bounded irregular pyramid (BIP) (Marfil et al., 2004) is a hierarchical structure that 
merges characteristics from regular and irregular pyramids. Its data structure combines the 
simplest regular and irregular structures: the 2×2/4 regular one and the simple graph 
irregular representation. The algorithm firstly tries to work in a regular way by generating, 
from level l, a 2×2/4 new level l+1. However, only the 2×2 homogeneous arrays of Vl

generate a new vertex of Vl+1. Therefore, this step creates an incomplete regular level l + 1 
which only presents vertices associated to homogeneous regions at the level below. Vertices 
of level l which generate a new vertex in Vl+1 are linked to this vertex (son–parent edges). 
Then, all vertices without parent (orphan vertices) of level l search for a neighbour vertex 
with a parent in level l + 1 whose colour will be similar to the orphan vertex’s colour (parent 
search step). If there are several candidate parents, the orphan vertex is linked to the most 
similar parent. Finally, the irregular part of the BIP is built. In this step, orphan vertices, of 
level l, search for all neighbour orphan vertices at the same level. Among the set of 
candidates, they are linked with the most similar. When two orphan vertices are twined, a 
new parent is generated at level l + 1 (intra-level twining step). This parent is a node of the 
irregular part of the BIP. The algorithm performs these two steps simultaneously. Thus, if an 
orphan vertex does not find a parent in the parent search stage, it will search for an orphan 
neighbour to link to it (intra-level twining). In the parent search stage an orphan vertex can be 
linked with the irregular parent of a neighbour. Once this is completed, intra-level edges are 
generated at level l + 1. The decimation process stops when it is no longer possible to 
generate new vertices in the regular part of the BIP. When all the levels are generated, 
homogeneous vertices without parent are regarded as roots and their corresponding 
receptive fields constitute the segmented image. 
Fig. 2 shows some segmentation results obtained using the proposed algorithm. It can be 
noted as the different homogeneous regions present in the image have been correctly 
segmented. 

3.4 Medial axis extraction 

The geometric properties used to check if a region is curvilinear or not are based on the 
extraction of the skeleton of the region. The skeleton is defined as a subset of pixels that 
preserve the topological information of the region and it must approximate the medial axis. 
There are a lot of methods to estimate the skeleton of an object and they are either based on 
distance transforms defined by different metrics or algorithms based on simple shape 
deformations (Klette, 2003). The choice of the method often depends on the task, as there is 
no “best method”. One category is based on distance transforms, where a distance skeleton is 
a subset of grid points such that every point of this subset represents the centre of a maximal 
disc contained in the given component.  A second category is based on iterative thinning 
methods, where the term linear skeleton can be used for the result of a continuous 
deformation of the frontier of a connected subset without changing the connectivity of the 
original set, until only a set of lines and points remains. In this work a distance transformed 
approach is used for each colour segmented region, therefore obtaining a skeleton for each 
region. This skeleton will be used to estimate further geometric properties.  
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Fig. 2. Segmentation results obtained using the BIP structure (Marfil et al., 2004): a-c) 
original images; and d-f) segmentation results. 

The distance from one point to another is the smallest positive integer n such that there 
exists a sequence of distinct points p0, p1, p2…pn with pi being an -neighbour of pi-1, 1 i n.
For  = 8, the distance d(p,q) is called the d8-distance. If (ip, jp) and (iq, jq) are the coordinates 
of p and q respectively, then 

{ }qpqp jjiiqpd −−= ,max),(8   (8) 

For estimating the distance transform of a region we use the algorithm described in (Klette, 
2003) which can approximate the distance transform inside the region in only two steps, so 
it has got a low computational cost. We define the original region as an image:  I(i,j) = 0, if 
the pixel (i, j) belongs to the border of the region, and I(i,j) = 255 otherwise. In the first step 
the function f1 is defined as 
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The function f1 is applied to the image I from top to bottom and from left to right, producing 
I*(i, j) =f1(i ,j, I(i, j)).  In the second step the function f2 is defined as 

{ }1)1,1(,1)1,1(,1)1,(,1),1(),,(min)),(,,(2 ++++−+++++= ∗∗ jiTjiTjiTjiTjiIjiIjif   (10) 
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and the resulting image T is calculated as T(i, j) = f2(i, j, I*(i,j)), applying f2 from bottom to top 
and from right to left, and being T the distance transform image of I. If we choose those 
pixels (is, js) in the image T such as none of the points in the vicinity A8((is, js)) has a value in 
T equal to T(is, js)+1 then those pixels (is, js) belong to the distance skeleton and they are 
supposed to be local maxima  in the distance transform. 
The resulting distance skeletons are generally not connected, so we post-process them with 
morphological operations (interpolation, dilatation, erosion and elimination of not useful 
pixels) to obtain a connected and smooth skeleton. By this way we obtain an approximation 
to the medial axis of the object. 

3.5 Skeleton classification 

Once the skeletons are calculated for each segmented region our method decides which 
parts of the skeleton belong to a curvilinear region and which not. In order to achieve this 
goal, several geometric characteristics are estimated: symmetry around the skeleton, ratio 
between average width and length, and borders parallelism (see Section 3.1). 

3.5.1 Symmetry around the skeleton 

The method checks those pixels which comply with the requirement of (3). To describe the 
algorithm we can define a skeleton as the set of connected pixels ps=(is, js),  0 s N-1, and N
the number of pixels being evaluated of the skeleton. In a first step, the normal vector is 
calculated for each pixel ps in the skeleton, and the cross-points between the normal and the 
left and right borders of the region are estimated. If we define psl and psr as these cross-
points, then we obtain the triplets (ps, psl, psr), 0 s N-1. We can implement (3) as 
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being l
sw  the Euclidean distance between pixels ps and psl and r

sw the Euclidean distance 
between pixels ps and psr.
The left side in (11) is a term that grows with the asymmetries of the region and the values 

wUΔ and wΔσ in the right side are parameters of the method. For our experiments, we have 
used wUΔ = 10 and wΔσ = 50 . The number of pixels N also appears on the right side of  (11), 
in a way that longer regions are allowed to have a higher value of asymmetry.  
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3.5.2 Ratio wL
In a similar way that Section 3.5.1, we define ws as the width of the region estimated as the 
Euclidean distance between pixels psl and psr given a position s in the skeleton. Then, (5) is 
implemented as 
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maxL is the maximum length that the curvilinear skeleton could have and is calculated with 
all the connected pixels of the skeleton of the object. wU is also a parameter of the method. 
In our experiments, it has been set to 1.5. 

3.5.3 Borders parallelism 

To check the borders parallelism requirement we estimate the tangential vectors on the 
borders at pixels psl and psr. Then, we calculate the angle between those vectors and the 
normal vector given a position s, obtaining angles sl and sr. Equation (7) is implemented as 
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U  is a parameter of the method. For our experiments, it has been set to 30 degrees.  

3.5.4 Classification algorithm 

The algorithm to classify the skeletons into the curvilinear group or the not curvilinear one 
works in an easy way. Once the skeleton has been extracted from the distance transform 
image associated to an object, the algorithm tries to join as many pixels as possible to form a 
curvilinear skeleton. So the algorithm begins in an endpoint of the skeleton and it looks for 
adding the connected pixels checking if (11), (14) and (15) are true with each new added 
pixel. If these equations are true for a pixel, then the new pixel is added and the algorithm 
will check the next connected pixel in the extracted skeleton. If the new pixel does not 
comply with all the requirements, then the curvilinear skeleton is finished and a new 
curvilinear region will begin with the next positive evaluation.  
Given an object and its skeleton, when all the pixels have been evaluated, the curvilinear 
skeletons whose endpoints are near are linked to form a longer curvilinear skeleton. At the 
end of the process, the parts of the objects whose skeleton has been evaluated as a 
curvilinear skeleton are considered as curvilinear regions. The algorithm allows to demand 
a minimum length Lmin to the regions. In our experiments, the minimum length has been set 
to 10  pixels. 
Figs. 3 and 4 present an experiment with a real scene obtained using our typical set of 
parameters. In Fig. 3, the results of the detection of objects and classification of the extracted 
skeletons are presented. Fig. 4 presents the original scene with the curvilinear skeletons 
superimposed. 
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Fig. 3. Detected segmented regions in a segmentation image. The extracted skeletons have 
been drawn (in green colour the skeletons classified as curvilinear and in red colour as not 
curvilinear). Also some estimated normal vectors (black colour) to the skeletons have been 
drawn.

Fig. 4.  Original image with the detected curvilinear skeletons (see Fig. 3). Several interesting 
objects as the ball pen, keyboard and webcam cable have been detected. Parameters used 
are: segmentation threshold = 95.0, wUΔ = 10, wΔσ = 50 , wU =1.5, U =30º, Lmin = 10 pixels. 

3.6. Normalisation stage 

As it is pointed out by Tuytelaars and Van Gool (2004), it is better to compensate for part of 
the geometric deformations through a normalisation stage, before obtaining the descriptor 
associated to the region. In our case, the geometric normalisation stage will be achieved by 
enclosing the curvilinear region inside an elliptically-shaped region and by transforming 
this region to a circular reference region of fixed size  (see Fig. 5). This process leaves one 
degree of freedom to be determined which corresponds to a free rotation of the circular 
region around its centre. In our case, it is not a problem because the shape will be 
represented using a contour descriptor which is invariant to rotation distortions. 
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Fig. 5. a) Original curvilinear region; and b) normalised region. 

4. Shape description 

Once the curvilinear regions have been extracted from the input image, they are 
characterised using a shape descriptor. Shape representation constitutes one of the most 
powerful tools to represent a planar object. Therefore, many approaches have been 
proposed to describe shapes from a small set of features. These descriptors can be divided 
into those which work on a shape as a whole (global descriptors) and those which work on the 
contours of the shape (boundary-based descriptors). Boundary-based descriptors are less 
computationally intense than global ones. However, since they are based on the shape 
contour, they cannot take into account the internal structure of the object. Therefore, 
boundary-based methods are not suited to deal with certain kinds of applications. On the 
other hand, most of the boundary-based descriptors do not need to normalise the 2D 
representation of the object to achieve common geometrical invariance. Thus, a boundary-
based method, the popular curvature scale space (Mokhtarian & Mackworth, 1986), has been 
used in the MPEG-7 standard. 
In this work, we employ a boundary-based descriptor. Particularly, this descriptor is based 
on the estimation of the curvature associated to the shape contour. By definition, the 
curvature function encodes the shape contour in terms of their local curvature or 
orientation. If c(t)=(x(t), y(t)) is a parametric plane curve, then its curvature function (t) can
be calculated as (Mokhtarian & Mackworth, 1986) 
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This equation implies that estimating the curvature involves the first and second order 
directional derivatives of the plane curve co-ordinates. This is a problem in the case of 
computational analysis where the plane curve is represented in a digital form. In order to 
solve this problem, two different approaches are often encountered: those that approximate 
the plane curve co-ordinates (interpolation-based curvature estimators), and those that estimate 
the curve orientation at each contour point with respect to a reference direction (angle-based 
curvature estimators). In addition, both type of methods can be subdivided in single scale 
methods and multiscale ones. Single scale methods are based upon an analysis of the 
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contour using a fixed set of parameters. Multiscale methods represent the evolution (or 
deformation) of the original contour when a certain parameter value is varied. 
The described shape descriptor is grouped into the angle-based curvature estimators. These 
approaches propose an alternative curvature measure based on angles between vectors 
which are defined as a function of the curve co-ordinates. Thus, the contour curvature (t)
can be defined as the variation of the curve slope (t) with respect to t, that is, the inverse of 
the curvature radius (t):

)(
1)()(
tt

tt
ρ

ψκ =
∂

∂
=   (17) 

In order to extract (t) from a digital contour, several methods have been proposed. The 
majority of these approaches consist of comparing segments of k-points at both sides of a 
given point to estimate its curvature. Therefore, the value of k determines the cut frequency 
of the curve filtering. So, these algorithms are single scale methods in which only features 
unaffected by the filtering process may be detected. On the contrary, Beus and Tiu (1987) 
propose a multiscale angle-based approach which modifies the Freeman's approach 
(Freeman, 1978) by averaging the results obtained for several values of k. However, this 
approach is slow and, in any case, it must choose the cut frequencies for each iteration 
(Bandera et al., 2000). 
Another solution is to adapt the cut frequency of the filter at each curve point as a function 
of the local properties of the shape around it. A k-slope algorithm which estimates the 
curvature using a k value which is adaptively changed according to the local information of 
the boundary is proposed by Bandera et al. (2000). In this work, we will employ this 
curvature estimator. Thus, Fig. 6 shows several examples of curvature functions associated 
to different shape contours.  

Fig. 6. a-d) Curvilinear region shapes and associated curvature functions 
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5. Experimental results 

5.1. Shape description: a comparative study 

The proposed shape descriptor has been compared to other methods to test its performance. 
Particularly, we chose for the purpose of comparison the methods proposed by Bernier and 
Landry (2003) and Zhang and Lu (2005). The first method employs a contour-based 
descriptor, whereas the second one is rather region-based. In order to compare the 
performance of the different methods, a publicly available data set (Sebastian et al., 2001) 
was employed1. This data set consists of nine classes with eleven shapes in each cluster (see 
Fig. 7). 

Fig. 7. A data set of 99 shapes (Sebastian et al., 2001) 

The experiments were performed on a Pentium IV 2.6 GHz PC. Each shape was matched 
against all the other shapes of the data set and the number of times the test image was 
correctly classified was counted in the nth nearest neighbours (n ranging from 1 to 8) 
(Tabbone et al., 2006). Fig. 8 shows the nth nearest match rates for each approach. Although 
the results of the first nearest matches were quite similar among all methods, the results for 
the matches from 5 to 8 were better with our approach. Finally, it must be mentioned that 
these results are quite similar to the ones reported by Tabbone et al. (2006) which use a more 
computationally expensive shape descriptor defined on the Radon transform.  

                                                                
1 http://www.lems.brown.edu/vision/researchAreas/SIID/ 
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Fig. 8. Comparison of the employed shape descriptor with other approaches (see text) 

5.2. Scene recognition experiments 

Once the curvilinear regions have been detected, they are characterised using a 260-
dimensional space whose first two dimensions (x, y)i are the co-ordinates of the centre of 
mass of the region (the image co-ordinates are ranged from 0 to 256), the second two 
dimensions (h, s)i are the mean hue and saturation values of the region (HSV colour space), 
and the other 256 values {fci}i=1...256 are the curvature function of the object shape. Each image 
is then described by the properties of the associated set of curvilinear regions.  

In this image matching scheme, two images will be similar if their associated sets of 
curvilinear regions are similar. The distance between two curvilinear regions i and j can be 
defined as
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where  is equal to |hi-hj|if this value is less than , or equal to (2  -|hi-hj|) in any other 
case. The parameters i define the importance of the position, colour and shape into the 
distance measure and they have been experimentally adjusted. The * operator denotes the 
convolution and it is applied ranging from 1 to 256, providing rotation invariance. Then, 
given a query image Q and a dataset of images Bi, whose associated sets of curvilinear 
regions have been detected and characterised off-line, the image matching process firstly 
extracts the set of NQ curvilinear regions {cQ}i=1...NQ present in the query image. They are 
sorted as a function of their lengths. Then, the comparison between Q and each image Bi is 
achieved by comparing each curvilinear region in Q, cQi, with all the NBi curvilinear regions 
present in Bi, {cBi}i=1...NBi, using (18). The most similar region is selected and, if the similarity 
value, D(cQi,cBij), is less than a given threshold U, both curvilinear regions are paired. This 
implies that the selected curvilinear region of Bi cannot be paired with other curvilinear 
region of Q. Finally, a similarity value is assigned to the comparison between images Q and 
Bi. This value is defined as 
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where N’Q is the number of paired curvilinear regions. 

The images Bi are then sorted according to the obtained similarity values. To test the 
method, a database of 40 images obtained in an office-like environment has been created. 
This database can be divided into 10 different scenarios (4 different images for each 
scenario). Fig. 9 presents two example retrievals for this database. Query is the leftmost 
image in each row, and subsequent images are nearest neighbours. Detected curvilinear 
regions employed to match both images have been marked.  

To evaluate the matching performance, we have employed the normalised average rank R
(Grauman & Darrell, 2005) 
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where Ri is the rank at which the ith relevant image is retrieved, NR is the number of 
relevant images for a given query, and N is the number of examples in the database. A 
normalised average rank equal to 0 implies a perfect performance, that is all relevant images 
in the database have been retrieved as nearest neighbours of the query image. For the 
reported experiment, the normalised average rank of relevant images present an average 
value of 0.025 and a standard deviation of 0.001. 

Fig. 9. Example retrievals for a database of office-like environment images (see text for 
details)
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6. Conclusions and future work 

This chapter presents a method for image matching which is based on the detection and 
characterisation of curvilinear regions. In a curvilinear region, the ratio between its average 
width and its total length should be less than a predefined threshold. Besides, left and right 
borders should be locally parallel, it should exist a geometric similarity around the region 
axis and the colour along this axis should be homogeneous. That is, they constitute 
particular image structures and, therefore, the method is restricted to scenes where these 
particular items are presented. On the contrary, curvilinear regions automatically deform 
with changing viewpoint as to keep on covering identical physical parts of a scene. For this 
reason, they can be used as distinguished regions. The shape contour of these curvilinear 
regions is characterised using the adaptive curvature function. Experimental results show 
that this shape descriptor is invariant to rotation and translation, and partially invariant to 
noise and skewing. Scaling invariance is achieved by employing an extra normalisation 
stage. Thus, this descriptor, plus the region colour and position, can be used to match 
curvilinear regions detected on the input image with those previously stored in a database. 
This is the basis of the correspondence algorithm described in this paper: the similarity 
index between two images is determined by the presence of the same set of curvilinear 
regions localised in similar positions. 

There are many directions for further research. One of this is the integration of several types 
of distinguished regions. As we commented above, the obligatory presence of these regions 
in the images is the main disadvantage of the proposed system. Besides, further work must 
be accomplished in the correspondence algorithm to employ the most similar region 
correspondences as ground control points. These points could be used to generate a 
fundamental matrix describing the geometric constraints between the two images. Thus, 
matches that did not agree with the majority solution could be removed. 
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1. Introduction 

First of all, let's give a tentative answer to the following question: what is pattern 
recognition (PR)? Among all the possible existing answers, that which we consider being 
the best adapted to the situation and to the concern of this chapter is: "pattern recognition is 
the scientific discipline of machine learning (or artificial intelligence) that aims at classifying 
data (patterns) into a number of categories or classes". But what is a pattern?
In 1985, Satoshi Watanabe (Watanabe, 1985) defined a pattern as "the opposite of chaos; it is 
an entity, vaguely defined, that could be given a name." In other words, a pattern can be any 
entity of interest which one needs to recognise and/or identify: it is so worthy that one 
would like to know its name (its identity).   Examples of patterns are: a pixel in an image, a 
2D or 3D shape, a typewritten or handwritten character, the gait of an individual, a gesture, 
a fingerprint, a footprint, a human face, the voice of an individual, a speech signal, ECG 
time series, a building, a shape of an animal. 
A pattern recognition system (PRS) is an automatic system that aims at classifying the input 
pattern into a specific class. It proceeds into two successive tasks: (1) the analysis (or 
description) that extracts the characteristics from the pattern being studied and (2) the 
classification (or recognition) that enables us to recognise an object (or a pattern) by using 
some characteristics derived from the first task. 
The classification scheme is usually based on the availability of the training set that is a set 
of patterns already having been classified. This learning strategy is termed as supervised 
learning in opposition to the unsupervised learning. A learning strategy is said to be 
unsupervised if for the system is not given an a priori information about classes; it 
establishes the classes itself based on the regularities of the features. Features are those 
measurements which are extracted from a pattern to represent it in the features space. In 
other words, pattern analysis enables us to use some features to describe and represent it 
instead of using the pattern itself. Also called characteristics, attributes or signatures the 
recognition efficiency and reliability are dependent on their choice. 
Pattern recognition constitutes an important tool in various application domains, but 
unfortunately, that is not always an easy task to carry out. Commonly, one can encounter 
four major methodologies in PRSs; which are: statistical approach, syntactic approach, 
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template matching, neural networks. In this chapter, our remarks and details will be 
directed, mainly, towards systems based on the statistical approach since it is the more 
commonly used in practice. 

1.1 Statistical approach 

Typically, statistical PRSs are based on  statistics and probabilities. In these systems, features 
are converted to numbers which are placed into a vector to represent the pattern. This 
approach is most intensively used in practice because it is the simplest to handle. 
In this approach, patterns to be classified are represented by a set of features defining a 
specific multidimensional vector: by doing so, each pattern is represented by a point in the 
multidimensional features space. To compare patterns, this approach uses measures by 
observing distances between points in this statistical space.  For more details and deeper 
considerations on this approach, one can refer to (Jain, 2000) that presents a review of 
statistical pattern recognition approaches. 

1.2 Syntactic approach 

Also called structural PRSs, these systems are based on the relation between features. In this 
approach, patterns are represented by structures which can take into account more complex 
relations between features than numerical feature vectors used in statistical PRSs 
(Venguerov & Cunningham, 1998). Patterns are described in hierarchical structure 
composed of sub-structures composed themselves of smaller sub-structures. 
As explained in (Sonka et al., 1993), the shape is represented with a set of predefined 
primitives called the codebook and the primitives are called codewords. For example, given 
the codewords on the left of figure 1, the shape on the right of the figure can be represented 
as the following string S, when starting from the pointed codeword on the figure: 

 S = d b a b c b a b d b a b c b a b  (1) 

The system parses the set of extracted features using a kind of predefined grammar. If the 
whole features extracted from a pattern can be parsed to the grammar then the system has 
recognised the pattern. Unfortunately, grammar-based syntactic pattern recognition is 
generally very difficult to handle. 

a

c db

c

c

a
a

a a

b

b b b

b

b
bb

d

d

Starting codeword

Fig. 1. Example of syntactic description features 

1.3 Template matching 

Template matching approach is widely used in image processing to localize and identify 
shapes in an image. In this approach, one looks for parts in an image which match a 



An Overview of Advances of Pattern Recognition Systems in Computer Vision 171

template (or model). In visual pattern recognition, one compares the template function to 
the input image by maximising the spatial cross-correlation or by minimising a distance: 
that provides the matching rate. 
The strategy of this approach is: for each possible position (in the image), each possible 
rotation, or each other geometric transformation of the template, compare each pixel’s 
neighbourhood to this template. After computing the matching rate for each possibility, 
select the largest one, that exceeds a predefined threshold. It is a very expensive operation 
while dealing with big templates and/or large sets of images (Brunelli & Poggio, 1997 ; 
Roberts & Everson, 2001 ; Cole et al., 2004). Figures 2 illustrate a pattern recognition based 
on the template matching approach. Figure 2.a is the input image I, Fig.1.b represents two 
templates (K representing letter 'K' and P letter 'P'). Figures 2.c and 2.d represent, 
respectively, the normalized cross-correlation of I with K and the normalized cross-
correlation of I with P. On these two images, the cross-correlation peaks surrounded by a 
circle indicate the location of the most matching letter in the input image. On figure 2.e, we 
have superposed the templates on the input image, accordingly to the coordinates of 
corresponding correlation peaks. For this study, we didn't take the rotation and the scaling 
into account: from the result, it clearly appears that this approach retrieves only the shape 
that matches perfectly the model (size and rotation). This explains why only one 'K' (the 
rotated one) and only one 'P' (the down-scaled one) are recognised. 

a) c)

b)

d) e) 

Fig. 2. Illustration of the template matching method

1.4 Neural networks 

Typically, an artificial neural network (ANN) is a self-adaptive trainable process that is able 
to learn to resolve complex problems based on available knowledge. A set of available data 
is supplied to the system so that it finds the most adapted function among an allowed class 
of functions that matches the input. 
An ANN-based system simulates how the biological brain works: it is composed of 
interconnected processing elements (PE) that simulate neurones. Using this interconnection 
(or synapse), each neurone (or PE) can pass information to another. As can be seen on figure 
3, these interconnections are not necessarily binary (on or off) but they may have varying 
weights defined by the weight matrix W: the weight applied to a connection results from the 
learning process and indicates the importance of the contribution of the preceding neurone 
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in the information being passed to the following neurone. Figure 3 shows a simple neural 
network representing the Perceptron as defined by Frank Rosenblatt in 1957. On this 
example, the output Outj (j=1 or 2) is defined by a weighted combination of the inputs. In 
the reference (Abdi, 1994), the author presents a nice introduction to ANNs. 
Besides these approaches, one can encounter other methodologies like those based on fuzzy-
set theoretic, genetic algorithms. In some applications, hybrid methodologies combine 
different aspects of these approaches to design more complex PRSs. In (Liu et al., 2006), the 
authors present an overview of pattern recognition approaches and the classification of their 
associated applications. 

Output

layer 

Input

layer

w11w12

w21

w22

w31 w32

Out1

Out2

In1

In2

In3

Fig. 3. Example of neural network 

In the remainder of this chapter, we will develop three sections. First, we present a generic 
scheme of a pattern recognition system. Then we give an overview of the advances of 
different PRSs and some examples of their applications. Last, as an illustration, we present a 
specific application example based on our MSGPR (Multi-Scale curve smoothing for 
Generalised Pattern Recognition) description method. As presented further, MSGPR is a 
multi-scale method we have developed for describing planar objects by analysing their 
boundary.

2. A generic scheme of a pattern recognition system 

From now, our concerns will be primarily focused on PRSs in computer vision. Commonly, 
in this field, the input is one or more images and the output is one or more images with 
eventually, some semantic and/or textual entities. 
In figure 4, we represent a generic scheme of a (statistical) PRS. This figure summarises the 
principal aspects of a PRS in computer vision. On this figure the two successive tasks can be 
observed: on one hand, the analysis/description task (see  on figure 4) and on the other 
hand the classification/recognition task (see  on figure 4).  
After features are extracted, the features selection that may follow aims at reducing the 
number of features to be provided to the classification process. Features that are likely to 
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improve discrimination are retained and the others are discarded. During this processing, 
higher level features can be derived by combining and/or transforming low level features, 
e.g. by applying the so called independent component analysis (ICA) (Roberts & Everson, 
2001): this operation thus leads to the reduction of the dimension of the feature space. 
These features must be as discriminative as possible to reduce false alarms due to 
misclassification during the second task. Efficient features must also present some essential 
properties such as: 
• translation invariance: whichever be the location of the pattern, it must give exactly the 

same features, 
• rotation invariance: extracted features must not vary with the rotation of the pattern, 
• scale invariance: scale changing must not affect the extracted features, 
• noise resistance: features must be as robust as possible against noise i.e. they must be 

the same whichever be the strength of the noise that affects the pattern, 
• statistically independent: two features must be statistically independent, 
• compact. The number of retained features is not too large. It must also be fast in 

extraction time and in matching, 
• reliable: as long as one deals with the same pattern, the extracted features must remain 

the same. 

Image 
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Features 
extraction

Features 
selection

Analysis/Description 

Similarity measure

(matching)

Classification/Recognition 

Interpretation 

Off-line 
Learning

Models’ 
Features 
database

Images 
database

Fig. 4. A generic PRS scheme 

During the classification task, the system uses the features extracted in the analysis stage 
from each of the patterns to compare. As illustrated on figure 4, features are extracted from 
the patterns of the database during an off-line learning processing. This enables to create 
features database before each query occurs: by proceeding this way, one doesn't need to 
compute features of models at each query. To compare two patterns, the system uses a 
metric that measures a kind of distance (the similarity or the dissimilarity) to assess how 
similar are two patterns: it is an expression of the distance between the points representing 
the two patterns in the features space. This procedure gives the similarity index or similarity 
score between two patterns. In some cases (probably the most natural way), the similarity 
index is given in terms of a rate varying from 0% for totally different patterns to 100% for 
perfectly similar patterns (Kpalma & Ronsin, 2006). Some commonly used metrics are 
Minkowski distance, cosine distance, Hausdorff distance, Mahalanobis Distance (Veltkamp 
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& Hagedoorn, 2001 ; Zhang, 2002) or city block distance and Euclidian distance that are 
particular Minkowski distances. The following paragraph illustrates formalism of some of 
them.
Let VA(a1, a2,…, aN) and VB(b1, b2,…, bN) be the features vectors representing patterns A and 
B in an N-dimensional features space ; examples of distances are defined by the following 
expressions. 
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where θ is the angle between the two vectors VA and VB.
Figure 5 shows an example of three vectors V, U and W represented in 2D space. As it can 
be seen on this example the value of the similarity/dissimilarity depends on the used 
distance (metric). In the tables on this figure, d3 gives the same distance between U and W, 
on one hand, and between V and W, on the other hand, (d3(U,W)= d3(V,W)=0.15) but it 
gives 0 distance between U and V. This leads to confusions, because a distance of 0 that also 
means vectors equality, may lead to the decision that the patterns to be compared are the 
same. A particular attention must be paid while choosing a distance. In (Kpalma & Ronsin, 
2006) we have proposed a cosine-based distance that enables to remove the ambiguity of the 
distance between collinear vectors. Since the obtained distance varies from a metric to 
another, one must be very careful and be sure to use the same metric during all the 
procedure.
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Fig. 5. Examples of similarity measures between two vectors depending on the chosen metric 
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3. Pattern recognition applications and an overview of advances 

Pattern recognition is studied in many fields, including psychology, ethnology, forensics, 
marketing, artificial intelligence, remote sensing, agriculture, computer science, data mining, 
document classification, multimedia, biometrics, surveillance, medical imaging, 
bioinformatics and internet search. Pattern recognition helps to resolve various problems 
such as: optical character recognition (OCR), zip-code recognition, bank check recognition, 
industrial parts inspection, speech recognition, document recognition, face recognition, gait 
recognition or gesture recognition, fingerprint recognition, image indexing or retrieval, 
image segmentation (by pixels classification)...
In (Pal & Pal, 2002) number of experts address the problem of pattern recognition and 
present basic concepts involved. One can find the evolution of pattern recognition ; this 
enables the reader to establish a categorisation of the existing PRSs according to the used 
methodology and the application. 
In (Kuncheva, 2004), the author addresses the non-trivial concept of forgetting in the 
challenging field of machine learning in non-stationary changing environments. This point 
of view is essential in on-line diagnosis when using medical imaging: indeed while dealing 
with PR in real world, the pattern being studied is subject to variation with respect to time. 
A possible solution is to continuously update the classifier. By doing so, the classifier must 
be able to "forget" the outdated knowledge. The idea behind this concept is to design an 
adaptive training system that is able to self-adapt itself accordingly to the changing of the 
pattern being studied. 
Pattern recognition is also applied in more complex fields like data mining (DM) also called 
knowledge-discovery in databases (KDD). This emerging topic includes the process of 
automatically searching large volumes of data for patterns such as association rules. As 
defined in (Frawley et al., 1992), the DM "is the nontrivial extraction of implicit, previously 
unknown, and potentially useful information from data. Given a set of facts (data) F, a 
language L, and some measure of certainty C, we define a pattern as a statement S in L that 
describes relationships among a subset FS of F with a certainty c, such that S is simpler (in 
some sense) than the enumeration of all facts in FS. A pattern that is interesting (according to 
a user-imposed interest measure) and certain enough (again according to the user’s criteria) 
is called knowledge. The output of a program that monitors the set of facts in a database and 
produces patterns in this sense is discovered knowledge". 

3.1 Pattern recognition in robotics 

The applications of PRSs in robotics are permanent. More recently, Mario E. Munich and his 
co-authors (Munich et al., 2006) have presented a summary on this subject. In this paper, 
they show that recent advances in computer vision have given rise to a robust and invariant 
visual pattern recognition technology based on extracting a set of characteristic features 
from an image. With visual pattern recognition systems, a robot may acquire the ability to 
explore its environment without user intervention ; it may be able to build a reliable map of 
the environment and localize itself in the map: this will help the robot achieve full 
autonomy. Examples of robots using visual pattern recognition approaches are the Sony’s 
AIBO ERS-7, Yaskawa’s SmartPal, and Phillips’ iCat. 
In robotics, visual servoing or visual tracking is of high interest. For example visual tracking 
allows, robots to extract themselves the content of the observed scene as a human observer 
can do it by changing his different perspectives and scales of observation. François 
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Chaumette (Chaumette, 1994), has addressed the problem and proposed some solutions in a 
closed loop system based on vision-based task. In (Chaumette, 2004), he proposes various 
visual features based on the image moments to characterise planar objects in 

3.2 Pattern recognition in biometrics 

The biometric authentication takes increasing place in various applications ranging from 
personal applications like access control to governmental applications like biometric 
passport and fight against terrorism. In this applications domain, one measures and 
analyses human physical (or physiological or biometric) and behavioural characteristics for 
authentication (or recognition) purposes. Examples of biometric characteristics include 
fingerprints, eye retinas and irises, facial patterns and hand geometry measurement, DNA 
(Deoxyribonucleic acid). Examples of biometric behavioural characteristics include 
signature, gait and typing patterns. This helps to identify individual people in forensics 
applications. 
Reference (Jain et al., 2004a) is an interesting starting point to pattern recognition 
approaches and systems in biometrics. This paper gives a brief overview of the field of 
biometrics and summarizes some of its advantages, disadvantages, strengths, limitations, 
and related privacy concerns. In (Jain et al., 2004b), the authors also address the problem of 
the accuracy of the authentication and that of the individual's right to the security, to the 
privacy and to the anonymity. 
The reader is encouraged to have a look on the article presented in (Jain & Pankanti, 2006). 
The authors of this article address a problem of identity steeling through a true story and 
then they present some current or forthcoming systems based on biometric PRSs that will 
help prevent identity steeling. 

3.3 Content-based image retrieval 

Content-based image retrieval systems aim at automatically describing images by using 
their own content: the colour, the texture and the shape or their combination. As explained 
in (Sikora, 2001; Bober, 2001), image retrieval has became an active research and 
development domain since the early 1970s. During the last decade the research on image 
retrieval became of high importance. The most frequent and common means for image 
retrieval is to index them with text keywords. If this technique seems to be simple, it 
becomes rapidly laborious and fastidious while facing large volumes of images. On the 
other hand, images are rich in content so, to overcome difficulties due to the huge data 
volume, the content-based image retrieval emerged as a promising mean for retrieving 
images and browsing large images databases 
With the simultaneous rapid growth of computer systems and the growing huge availability 
of digital data, such pattern recognition systems become increasingly necessary to help 
browse databases and find the desired information within a reasonable time limit. 
Accordingly to this observation, systems like CBIR (Content-Based Image Retrieval), QBIC 
(Query By Image Content), QBE (Query By Example) need more attention and take more 
and more place in the concerns of the researchers (Mokhtarian et al., 1996 ; Trimeche et al., 
2000 ; Veltkamp & Tanase, 2001 ; Veltkamp & Hagedoorn, 2001). With query by example, 
the user supplies a query image and the PRS finds images of the database that are most 
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similar to it based on various low-level features like colour, texture or shape. With query by 
sketch, the user draws roughly the image he is looking for and the PRS locates images of the 
database that match the best the sketch. In the reference (Veltkamp & Tanase, 2001), are 
reported various CBIR systems. After a brief description of CBIR system, the authors present 
different kinds of existing systems along with the features involved. 
In the context of image indexing, CBIR systems use content information as summarised in 
figure 6. An image can then be described by using features derived from colour, texture, 
shape or a combination of those features. 

Input 
image

Colour Shape Texture 

Fig. 6. Content-based image description features 

3.3.1 Colour-based features 

Colour features are based on colour distribution inside the image. There are many 
approaches to define colour-based features: dominant colour, colour histogram or colour 
space. Various colour representation space exist: red-green-blue (RGB) space, hue-
saturation-value (HSV) space or those based on the international commission on 
illumination (or CIE: commission internationale de l'éclairage) CIELUV space, CIELAB space, 
CIEXYZ space. From these representations, features are defined based on the colour 
histograms. There are different types of colour histograms depending on how the colour 
space is partitioned. The fixed binning for all images based on scalar linear quantisation, the 
adaptive binning based on an adaptive quantisation and the clustered binning based on the 
concept of vector quantisation. Some particular distances between histograms or main 
modes of histograms are used to measure the similarity/dissimilarity between colour 
histograms: Euclidian distance, histogram quadratic distance, histogram intersection 
distance (Smith & Chang, 1996), Jeffrey divergence, Kullback-Leibler divergence earth 
mover's distance. In the current description of the colour within MPEg-7, the following 
colour spaces are supported: RGB, YCrCb, HSV, hue-min-max-difference (HMMD), Linear 
transformation matrix with reference to RGB and monochrome (Martinez, 2004). 
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3.3.2 Texture-based features 

For each pixel of the image, one can determine the histogram of grey levels in predefined 
neighbouring region centred on that pixel. Distribution of pairs of grey levels for a given 
spatial relation on pixels can be observed in co-occurrence matrix M(i,j) (Haralick, 1973). 
Examples of various grey level co-occurrence matrices (GLCM) features defined by Haralick 
are based on these co-occurrence matrices. In Table 1, by considering a textured image with 
grey levels ranging from 0 to L-1, we present some of these texture features. 
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Table 1. Example of textures features 

3.3.3 Shape-based features 

There are many approaches (Coster & Chermant, 1985 ; Kpalma, 1994 ; Sossa, 2000), to 
estimates some properties of the shapes. We present, below, some samples of these 
properties. Figure 7 shows various shapes and the corresponding measures of their 
properties.

The elongation (EL) indicates how long is the pattern relatively to its width. It is defined by 
the following expression: 

M

m100EL
λ
λ

=   (5)

λm and λM being, respectively, the smallest and the largest eigenvalues of the inertia matrix 
of the shape. Also called elongation factor or elongation coefficient, this parameter varies 
from 0% for long but thick shapes to 100% for isotropic shape (see Fig. 7.e and Fig. 7.f). 
The compactness (CO) measures how branchy or how tortuous is the shape. For a given 2D 
shape, let A be the enclosed area and P the perimeter ; the compactness is defined by: 

2P

A4
100CO

π=  (6) 



An Overview of Advances of Pattern Recognition Systems in Computer Vision 179

The compactness varies from 0% for very branchy or very tortuous shapes to 100% for 
compact shapes like a circle   (see Fig. 7.a and Fig. 7.c). 
The mass deficit coefficient (MD) measures the area variation between the shape and the 
minimum enclosing circle centred on the centre of gravity of the shape. For a shape with 
area A, let SC be the area of the circumscribed circle, then the mass deficit area is defined as 
follows: 

C

C

S

AS
100MD

−
=  (7) 

The mass excess coefficient (ME) measures the area variation between the shape and the 
maximum enclosed circle centred on the centre of gravity of the shape. For a shape with 
area A, let SI be the area of the inscribed circle, then the mass deficit area is defined as 
follows: 

A

SA
100ME I−

=  (8) 

The two previous parameters, give another estimation of the compactness: they vary from 
0% for compact shapes (e.g. a circle) to 100% for spread out tortuous patterns (see Fig. 7.a 
and Fig. 7.d) 
The isotropic factor (IF) tells how isotropic is the pattern: it indicates how regular is the 
shape around its centre of gravity. For a given 2D shape, let Rm be its minimal radius and RM

its maximal radius then the IF parameter is defined by: 

M

m

R

R
100IF = (9)

The isotropic factor varies from 0% for anisotropic shapes to 100% for isotropic shapes like a 
circle (see Fig. 7.a and Fig. 7.d). 

EL=100.0% 
CO=100.0% 
MD=  0.0% 
ME=  0.0% 
IF=100.0%

EL=100.0%
CO= 59.6%
MD= 11.6%
ME=  4.3%
IF= 92.0%

EL=100.0%
CO= 64.5%
MD=  3.8%
ME= 10.9%
IF= 92.6%

EL=100.0%
CO=  9.8%
MD= 50.2%
ME= 77.3%
IF= 33.7%

EL= 44.4%
CO= 75.4%
MD= 41.2%
ME= 47.6%
IF= 55.5%

EL=100.0% 
CO= 78.5% 
MD= 36.3% 
ME= 21.4% 
IF= 70.7%

a) b) c) d) e) f) 

Fig. 7. Various shapes and examples of shape-based features 

In the context of shape description, D. Zhang summarized very well the situation (Zhang & 
Lu, 2004). Figure 8 shows the flowchart of shape description approaches in a pattern 
recognition system. Typically, there are two kinds of approaches in shape description: the 
contour-based approach and the region-based one. 
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Shape description 

Region-based features 

Global 

Area 

Compactness 

Eccentricity 

Euler Number 

Geometric 
Moments 

Legendre 
Moments 

Shape Matrix 

Zernike Moments

Structural

Convex Hull 

Media Axis 

Core  

Contour-based features 

Structural

B-Spline 

Chain code 

Invariants  

Polygons 

Global 

Compactness 

Eccentricity 

Circularity 

Elastic matching 

Elongation 

Fourier 
descriptors 

Scale space 
descriptors 

Wavelet 

descriptors

Fig. 8. A classification of shape description approaches 
Contour-based approach 
Contour-based approaches extract shape features from the only contour in two possible 
ways: structural or global. In the structural approach, the contour is divided into sub-
sections to generate strings or trees according to a particular syntax. The similarity between 
two shapes is then measured by matching their strings or their trees. 
While dealing with the contour in the global way, an appropriate technique is used to 
extract primitive features from the integral contour: eccentricity, perimeter, circularity… 
From these basic features, one defines a multidimensional vector representing the shape in 
the features space. From this representation, the similarity measure or the matching of two 
shapes is done by directly measuring a specific distance between their feature vectors. 
For contour-based shape description, MPEG-7 working group (Bober, 2001 ; Martinez, 2004) 
has selected the so-called Curvature Scale-Space (CSS) representation which is proved to 
capture perceptually meaningful features of the shape (Mokhtarian et al., 1996 ; Matusiak & 
Daoudi, 1998 ; Lindenberg, 1998 ; Mokhtarian & Bober, 2003). 
A CSS image, represented on figure 9, is a multi-scale organization of the invariant local 
features of a 2-D contour: it consists of the curvature zero-crossing points recovered from 
the contour at multiple scales of resolution. The features extracted from the CSS image 
consist of the coordinates of the peaks of the CSS image. Scale decreasing is obtained 
through progressive low-pass filtering by convolutions of a parametric representation of the 
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contour data with Gaussian filters of increasing width. This representation carries a number 
of important properties, such as: 
• it captures very well characteristic features of the shape, enabling similarity-based 

retrieval,
• it reflects properties of the perception of human visual system and offers good 

generalization, 
• it is robust to non-rigid motion, 
• it is robust to partial occlusion of the shape, 
• it is robust to perspective transformations, which result from the changes of the camera 

parameters and are common in images and video, 
• it is compact. 
Some of the above properties of this descriptor are illustrated in figure  11, each frame 
containing very similar images according to CSS, based on the actual retrieval results from 
the MPEG-7 shape database. In figure 9, we represent two shapes and their corresponding 
CSS images. On the CSS images (bottom row) we have superposed the peaks points that are 
used to generate features (Mokhtarian & Bober, 2003). 

Fig. 9. Example of contours (top row) and   the corresponding CSS image with the peaks 
points (bottom row) 

Region-based approach 
In region-based approaches, all pixels surrounded by the shape boundary are taken into 
account to generate the shape descriptor. Like in the case of contour-based approaches, we 
encounter the same two different ways in region-based shape description: global and 
structural one. In the structural approach, the shape is decomposed into sub-regions to 
generate a tree to represent the shape. In the global way, one computes some characteristic 
features to generate a vector to represent the shape. Common global features derived from a 
region-based approach are: geometrical moment invariants, shape matrix, area, 
compactness, eccentricity, Euler number, geometric moments, Legendre moments, Zernike 
moments… For region-based shape description, the MPEG-7 working group (Bober, 2001 ; 
Martinez, 2004) has selected the angular radial transform (ART). It is a moment-based 
approach for a 2D region-based shape description. In (Ricard et al., 2005) the authors 
proposed a generalization of the ART approach to describe 2D and 3D shapes for content-
based image retrieval purpose. 
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The contour-based approaches are more appealing than region-based approaches because 
they involve less computation complexity, than the region-based ones, with enough 
discriminating efficiency. It is also demonstrated that characteristic information about a 
shape lie essentially on its contour features. The main drawback of contour-based 
descriptors is that they are more subject to noise and variations than region-based ones. 
Figure 10 shows examples of shapes and illustrates situations for which the contour-based 
or the region-based descriptors are most suitable. 
A shape may consist of just one single region (see Fig.10.a-c) or a set of several regions as 
well as regions with some holes inside them as illustrated in figures 10.d-f. Since the region-
based descriptors make use of all pixels constituting the shape, they can describe any kind 
of shapes. They are more suitable than the contour-based descriptors to handle complex 
shape consisting of holes in the object or several disjoint regions (see Fig.10.d-f) in a single 
descriptor. Indeed, for contour-based descriptors, these shapes consist not of a single 
contour but of multiple contours leading, thus, to multiple descriptors. 

(d) (f)

(b)

(e)

(h)

(c)

(i)

(a)

(g)

Fig. 10. Examples of various shapes 

Figures 10.g-i show very similar shapes from images of a same cup. They only differ by the 
handle: shape 10.g has a crack at the lower handle while the handle in 10.i is filled. When 
comparing these shapes: 
• the region-based shape descriptor will consider 10.g and 10.h similar but different from 

10.i,
• the contour-based shape descriptor will consider 10.h and 10.i similar but different from 

10.g.
As illustrated by MPEG-7 (Martinez, 2004), a challenge for a pattern descriptor is to enable 
the recognition of a pattern even if it has undergone various deformations namely partial 
occultation (Fig.11.a) and non-rigid deformation (Fig. 11.b).  
Figure 11.a, according to (Martinez, 2004), illustrates the robustness to partial occultation: 
indeed, in this figure, one can note that the tails or the legs of the horses are sometimes 
occulted but they are recognised to be from the same class. As presented in (Mokhtarian, 
1997 ; Petrakis, 2002) , this is possible because of the ability of the descriptor to handle local 
properties. On figure 11.c are represented various shapes that are classified in the same class 
based on the visual perceptual similarity 
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(a) (b) (c)

Fig. 11. a) robustness to partial occlusion, b) robustness to non-rigid deformation, c) 
perceptual similarity among different shapes 

The choice of a description method will depend on the application so, sometimes, one needs 
to make a compromise. Nevertheless, MPEG-7 has set some essential principles to evaluate 
the suitability of shape descriptor: retrieval accuracy, compactness, generics, low 
computation complexity, robustness and the ability to represent a shape in hierarchical way: 
from coarse to fine representation. 

3.4 An overview of the advances in pattern recognition 

Remco C. Veltkamp and Mirela Tanase presented in (Veltkamp & Tanase, 2000) a large 
panel of CBIR systems. Various approaches of the state of the art in content-based image 
retrieval and video retrieval are explored along with the features used in each approach, 
they also describe the matching functions used. This overview enables to confirm, as it was 
said before, that commonly designed CBIR systems are generally based on visual features 
such as colour, texture and shape. 
In (Iqbal & Aggarwal, 2002) is presented CIRES (Content-based Image REtrieval System), an 
online system for retrieval in image libraries. It is done to extend the retrieval paradigm, 
which was mostly limited to colour and texture analyses, by using image structure. Image 
structure was extracted via hierarchical perceptual grouping principles. 
In (Mittal, 2006) the author presents an overview of the content-based retrieval along with 
different strategies in terms of syntactic and semantic indexing for retrieval. After an 
analysis of the matching techniques used and the learning methods the author addresses 
some directions for future research in the content-based retrieval domain. 
Recently, N. Snavely and co-authors (Snavely et al., 2006) have presented a system that 
consists of 3D image-based modelling and representation of an unorganised images taken 
by different cameras in different conditions. The challenging aim of the system is to use the 
content-based information to browse an image database and reply to questions like:
• "where was I? Tell me where I was when I took this picture" 
• "what am I looking at? Tell me about objects visible in this image by transferring 

annotations from similar images" 
To do this, they used the SIFT (Scale Invariant Feature Transform) keypoints detector that 
was shown to be transformation invariant (Lowe, 2004). 
Among the various forthcoming systems, we can encounter MPEG-7. Formally named 
"Multimedia Content Description Interface", MPEG-7 aims at managing data in the way that 
content information can be retrieved easily. It is under development by the Moving Picture 
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Coding Experts Group (MPEG) that is a working group of ISO/IEC(∗) standards 
organization. It is in charge of the development of international standards for video and/or 
audio compression, decompression, processing and representation. This group has also 
developed well-known standards that are MPEG-1, MPEG-2 and MPEG-4. MPEG-1, 

MPEG-2 and MPEG-4 also make content available but MPEG-7 enables to find the desired 

content. MPEG-7 visual description tools consist of basic structures and descriptors that 
cover basic visual features: colour, texture, shape, motion, localization. Each category 
consists of elementary and sophisticated descriptors (Sikora, 2001; Bober, 2001). One must 

note that MPEG-7 addresses many different applications in various environments, thus it 

needs to provide a standard flexible and extensible framework for describing audio-visual 

data.

4. Application example based on the MSGPR method 

In (Kpalma & Ronsin, 2006) we have presented an original pattern description approach 
based on the multi-scale analysis of the contour of planar objects. This proposed approach 
summarises the different presented considerations in this chapter. It is well known that 
some objects, especially natural ones, exist with a more or less large range of scales; and that 
the aspect of the object can change from one scale to another. Without a priori information 
about the distance of observation inside a given scene, an interesting challenge can be to 
find an object without any precision about its scale of observation. Faced with this situation, 
it is very difficult to significantly describe a pattern using only one meaningful scale. To 
overcome this problem, increasingly more pattern description techniques are based on 
multi-scale or multiresolution representation methods (Lindeberg, 1998). Within this 
context, methods based on the pattern itself (Torres-Méndez et al., 2000 ; Kadyrov & Petrou, 
2001 ; Belongie et al., 2002 ; Grigorescu & Petkov, 2003) exist as well as methods based on 
pattern contour behaviour (Matusiak & Daoudi, 1998 ; Roh & Kweon, 1998 ; Wang et al., 
1999 ; Latecki et al., 2000). 
This study deals exclusively with methods based on the pattern contour. Called MSGPR (A 
Multi-Scale curve smoothing for Generalised Pattern Recognition) this scale-space 
(Mokhtarian et al., 1996 ; Matusiak & Daoudi, 1998 ; Wang et al., 1999 ; Mokhtarian & Bober, 
2003) method is based on multi-scale smoothing of a planar pattern contour. This method is 
totally translation and rotation insensitive and as showed in the initial studies it is also 
robust against scale change for a large range of scaling and resistant to additive noise. 

4.1 Description of the MSGPR method 

The framework of the MSGPR can be broken down into four main stages as follows (see 
Fig.12): 

1. the input contour is separated into two parameterised functions, 
2. both functions are low-pass filtered (smoothed), 
3. scale adjustment is then applied to both filtered functions so that the corresponding 

smoothed contour has the same scale as the input one, 

                                                                
(∗)ISO/IEC   stands for International Standards Organization/International Electro-technical 

Committee. 
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4. finally, the intersection points map (IPM) is generated by detecting the intersection 
points of the input contour and the smoothed scale-adjusted one. 

Scale adjustment 
Contour 

separation Filtering Input contour 

Intersection points map function 

g(σ,u)

u

g(σ,u)

u

y(u)

x(u) XGC(σ,u)

YGC(σ,u)

X(σ,u)

Y(σ,u)

u

σ

Fig. 12. MSGPR description scheme 

4.1.1 Coordinate separation 

The input contour is represented by a series of points defined by their (x,y) coordinates. 
First, the input contour is separated into two functions x(u) and y(u) which are functions of 
the normalised curvilinear u parameter that varies from 0 to 2π relative to the curve length. 
Each point of the curve is then represented by its parameterised coordinates ))u(y),u(x( .

4.1.2 Curve smoothing 

Functions x(u) and y(u) are then gradually smoothed by decreasing the filter bandwidth. 
Similarly to the curvature scale space (CSS) method (Mokhtarian et al., 1996 ; Matusiak & 
Daoudi, 1998 ; Wang et al., 1999 ; Mokhtarian & Bober, 2003) or other scale-space methods, 
smoothing is based on the Gaussian filters g(σ,u) with standard deviation σ:
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−

πσ
=σ  (10) 

The filtered functions are then given by: )u(x)u,(g)u,(X ∗σ=σ  and 
)u(y)u,(g)u,(Y ∗σ=σ  so that each ))u(y),u(x(  point on the input contour leads to the 

))u,(Y),u,(X( σσ  point on the output smoothed contour. 
Since the bandwidth is conversely proportional to σ, it is clear that the bandwidth decreases 
as σ increases. Thus the filter cuts increasingly lower so that the output functions move 
towards their mean values when σ tends towards infinity. 
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4.1.3 Scale adjustment 

After low-pass filtering, the scale adjustment system stretches the output contour so that it 
reaches the same scale as the input one and so that both contours intersect at certain points. 
Figure 13 shows an example of a contour and two smoothed ones (σ=30 and σ=180) after 
they have been scale-adjusted. The input contour C0 and smoothed scale-adjusted contours 
CGC(σ) are now on the same scale so that they can intersect. 

Original 
contour C0

Smoothed scale-adjusted 
contour CGC(σ=30)

Smoothed scale-adjusted 
contour CGC(σ=180) 

Fig. 13. Example of a contour and two smoothed scale-adjusted ones (σ=30 and σ=180)

4.1.4 Definition of the IPM function 

By increasing σ, the output contour moves towards a convex curve that has some intersection 
points with the input contour. By marking these intersection points for each σ, we obtain the 
intersection points map (IPM) function defined below which characterises the pattern. 
After the scale adjustment system, the IPM function is generated as follows. For each 
σ value, we define a function which is an image in the scale-space (u,σ) plane so that (see 
Fig.14): 
• 0),u(IPM =σ  (black) if the ))u(y),u(x(  point is an intersection point between the 

original curve and the filtered scale-adjusted one, 
• 1),u(IPM =σ  (white) if point ))u(y),u(x(  is not an intersection point. 
Figure 14 shows examples of contours (left column) and the corresponding IPM functions 
(right column). On this figure, intersection points are indicated by (1) through (6) or (8), for 
the contour in Fig.14.a or for that in Fig.14.c, respectively. On the right column, one can see 
the marks corresponding to those intersection points in the IPM representation. As can be 
seen on this figure, the IPM function is characteristic of the contour it is derived from. 

(1) (2) (3) (4) (5) (6) 

(1)
(2)

(3)

(4) (5)

(6)

b)
a)

(2) (3) (4) (5) (6) (8) (7)(1)
(1)

(2)(3)

(4) 

(5) (6) (7) (8)

d)c)

Fig. 14. Example of the IPM function 
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4.1.5 Features definition and selection 

After generating the IPM function, the following stage, but not the least one is features 
definition and selection. In (Kpalma & Ronsin, 2006) we used the circular distance between 
IPM points at various scale values. To extract these characteristic features, we first set the 
scale parameter σ to σ0 value (e.g. σ0 = 180). Then, for each pattern: 
•  we consider the IPM points at the set σ0 and select two consecutive pa and pb points 

which are, circularly, the furthest apart in the IPM function as illustrated in figure 15, 
•  we determine the circular distance between both points to produce the first d1

component of the V0 features vector, 
•  the next components of V0 are distances coming after d1:

 V = (V0, V1,…, VM-1) (11) 

To benefit from multi-scale information of the IPM function, we can define a set of M values 
of σ (σ0, σ1, ...,σM-1) and determine the Vi feature vectors   (i=0, 1, 2,…, M-1) corresponding 
to the σi scales. The global V features vector is then produced by a concatenation of the 
individual Vi scale vectors as follows: 

 V = (V0, V1,…, VM-1) (12) 

σ0
p2=pb p1=pap3 p4 p5 p6

d1d3 d5

d2 d4 d6

σ1=30
p2=pb

p1=pap2 p3 p4 p5

p6

p7

Fig. 15. Example of the IPM function 

4.1.6 Similarity measure 

To measure the matching rate between two VA and VB attribute vectors associated to two 
patterns, we define a similarity function as follows: 

)V,V(Max

)V,V(Min
))cos(1(50)V,V(SimScore

BA

BA
BA γ+=  (13) 

where γ  is the angle between both vectors and where .  indicates the module of a vector. 

This function ranges from 0% for very different vectors to 100% for perfectly matching 
vectors. 
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4.2 Application to car plate character recognition 

In this section, we present a system we have developed to illustrate pattern recognition 
systems. This application can be classified into the group of the contour-based statistical 
approaches. Our application illustrates an automatic reading of the number plates by using 
their digital images. Applying the IPM-based features we carry out the automatic 
recognition of the characters of the number plate. Figure 16 shows two images of plates 
written with different fonts: the difference appears more clearly for digit '3' out of the two 
plates.

a) b)

Fig. 16. Examples of number plates images 

4.2.1 Character recognition procedure 
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Contours extraction 

IPM function generation 
and features extraction
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corresponding similarity '3' (79%) 

IPM-based 
features 
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Fig. 16. An overview of an automatic number plate reading system. 

The recognition procedure is carried out into three stages as depicted in figure 17: 

(I) edge (or contours) detection that will enable to obtain contours delimiting each 
character in the image (Fig. 18.a et Fig. 18.b). One must note that this stage is very 
important in our process, because, the effectiveness of character recognition will 
depend on it.
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(II) contour extraction: in this stage, one considers only the external (or the outer) 
boundary (Fig. 18.c), because only these contours are taken into account. As for the 
stage (I), one must pay particular care to the extraction of the characters so that they 
are continuous and closed, without self-intersection. 

(III) character recognition: at this last stage, we apply our IPM-based description 
approach to extract the features and to integrate them into the identification process 
to measure the similarity score between each extracted character and the models of 
the data base. In this application, the similarity measure is based on the SimScore
function defined by equation (13). 

4.4.2 Experimental results 

Figures 18.a and 18.b represent the output images of the edge detection when applied to 
images corresponding to figure  16. The figure 18.c presents the set of the extracted 
characters from figures 18.a and 18.b. On figure 18.d we present a sample set of characters of 
the database: this base consists of the character set "bold.chr" of Borland®.

a) b)

c) d)

Fig. 18. a) and b) detected edges - c) extracted contours from a) and b) - d) examples of the 
content of the database. 

It must be noted that in this study, the database is composed of only one font while the 
query characters come from two different fonts. In order to improve the identification 
results, a possible solution would be to integrate in the database, all the possible fonts used 
to create car plates. Figures 19 show some results obtained from the input images presented 
on figure  16. On these figures, we represent some results of character recognition: on each 
figure, the contour on the upper left corner represents the query contour. Following 
contours in left-to-right and top-to-down scanning, represent eight retrieved contours which 
give the highest similarity scores. 
As can be seen on these figures, the identification of different characters is effective enough: 
for each query, the identified character (the most similar: the character next to the query in 
figures 19.a-d) is exactly the required character. Thus, for the query '3', we identify the letter 
'3' with a similarity score of 79%. Table 2 summarises the three highest similarity scores for 
the contours presented on figure 19. For the contour '9' as a query, we retrieved the digit '9'
with a similarity score up to 96% followed by the digit '6' with a similarity score of 79%. One 
can notice that the contour '6' of the used font is not other than the contour '9' which 
underwent a rotation of 180°: this explains that the digit '6' occupies the second position 
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during the retrieval process. In the same way, the topological similarity between the digit '5'
and the letter 'S' or between the digit '8' and the letter 'B' results in the appearance of 'S' and 
'B', respectively, into the second position in the retrieval ranging. In spite of this topological 
similarity, specific properties of each character lead to sufficiently important variations of 
similarity scores to avoid mistakes. 

a) b) c) d)

Fig. 19. Examples of the recognition output 

Query Retrieved character (Similarity score)

'3' '3' (79%) 'C' (62%) 'E' (56%)

'5' '5' (72%) 'S' (58%) '6' (55%)

'8' '8' (91%) 'B' (63%) '1' (61%)

'9' '9' (96%) '6' (79%) 'K' (76%)

Table 2. Retrieved characters and the corresponding similarity scores. 

5. Conclusion 

As mentioned before, pattern recognition does not appear as a new problem. A lot of studies 
have been performed on this scientific field and a lot of works are currently developed. 
Pattern recognition is a wide topic in machine learning. It aims to classify a pattern into one 
of a number of classes. It appears in various fields like psychology, agriculture, computer 
vision,  robotics , biometrics… With technological improvements and growing performances 
of computer science, its application field has no real limitation. In this context, a challenge 
consists of finding some suitable description features since commonly, the pattern to be 
classified must be represented by a set of features characterising it. These features must have 
discriminative properties: efficient features must be affined transformations insensitive. 
They must be robust against noise and against elastic deformations due, e.g., to movement 
in pictures. 
Through the application example based on our MSGPR method, we have illustrated various 
aspects of a PRS. With this example, we have illustrated the description task that enabled us 
to extract multi-scale features from the generated IPM function. By using theses features in 
the classification task, we identified the letters from a car number plate so that we 
automatically retrieved the license number of a vehicle. 
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The research topic of pattern recognition is under continuous development and in perpetual 
progress. With the large volumes of digital images, the challenge for pattern recognition in 
computer vision is now the development of a CBIR-like system: system that is able to 
retrieve useful information by using the only content of the input image. With the growing 
huge availability of digital images, pattern recognition takes more and more place in our 
daily life to help us find the desired information in a reasonable time limit, while browsing 
large databases. 
Pattern recognition is integrated into the forthcoming standard MPEG-7 via indexing 
approaches. Such standardization does not bring restriction to a domain: it gives synergy of 
best actors mixing challenge and cooperation. And moreover international standardization 
occurs as a requirement from different applications so it meets all conditions for large 
diffusion. Standards use the possibilities of last technological developments, and drive 
strong investments and focus research on the concerned domain. As it has been observed, 
for example, for coding when it was integrated inside different MPEG standards, the 
integration of pattern recognition inside MPEG-7 will boost its last developments. 
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1. Introduction  

High-density microarrays are a rapidly developing technology in molecular biology 
allowing one to measure simultaneously the activity of thousands of biomolecules in the cell 
under different experimental conditions. Two-color comparative microarray experiment is a 
key point of transcriptome (Yang et al., 2002; Herzel et al., 2001; Hegde et al., 2000), CGH 
(comparative genome hybridization, Pinkel et al., 1998, Ishkanian et al., 2004) and, more 
recently, protein (Eckel-Passow et al., 2005)  microarray technologies.  
In a conventional two-color microarray experiment (Fig. 1) two compared samples are 
labeled using different fluorescent dyes (typically the red-fluorescent dye, Cy5, and the 
green-fluorescent dye, Cy3), mixed and then co-hybridized to the DNA clones spotted 
regularly on the microarray. The array is scanned with a high spatial resolution at the 
corresponding fluorescent wavelengths, and at each scanned pixel the fluorescence 
intensities are recorded in two color channels (Cy5 and Cy3). The experiment aims to 
estimate the ratio of the measured intensities for each spot, reflecting differential gene 
(cDNA technology) or protein expression or a change in DNA copy number (CGH 
technology) between the test and control samples for the corresponding gene. These ratios 
are the primary source of information for the subsequent analysis of the microarray data, 
such as normalization, clustering, classification, differential expression analysis, etc. The 
main components of the microarray image analysis pipeline for spots include localization, 
quantification and quality control. 
Spot localization involves: (i) identifying the position of each spot on the array to associate it 
with the spotted clone; and (ii) establishing the borders between the neighboring spots to 
allow further independent data processing (extracting quantitative information) for each 
spot. Although spot localization can in principle be done manually, automating this process 
is essential, as fast and reliable localization increases overall analysis performance and 
allows high-throughput applications. Many localization algorithms (Buhler et al., 2000; Yang 
et al., 2002; Jain et al., 2002; Angulo & Serra, 2003; Brändle et al., 2003; Rueda & 
Vidyadharan, 2006, Ceccarelli & Antoniol, 2006) have been proposed. Some of them require 
either prior knowledge of some image-specific parameters or direct user participation to 
find grids. The others are “fully automatic”, meaning that different images can be processed 
without making adjustments for each particular image. However, even for these algorithms, 
there are always limitations in the automation process because of unpredictable deviations 
from the assumed array design, high contamination levels or large numbers of missing spots 
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that cannot be tolerated by the algorithms. In fact, each of the “fully automatic” algorithms 
has certain limits, and new attempts will never be stopped to push these limits further.  

Fig. 1. Two-color comparative microarray experiment.  

The aim of the spot quantification is to estimate the ratio. There are two approaches to do 
that. One is a direct arithmetic ratio of the background-corrected fluorescence intensity 
estimates in the two color channels (Yang et al., 2002; Bozinov & Rahnenführer, 2002; 
Angulo & Serra, 2003; Glasbey & Ghazal, 2003; Lehmussola et al., 2006; Axon Instruments, 
Inc. 2005), and the other is the slope of the linear regression plot of the Cy5 versus Cy3 
fluorescence intensities (Jain et al., 2002; Axon Instruments, Inc. 2005). The first approach 
requires the identification of both the foreground — the measured spot — and the 
background — typically the level of non-specific hybridization. Large diversity of the 
algorithms for spot segmentation and background estimation (Lehmussola et al., 2006) 
highlights the complexity of this problem. The second approach, based on linear regression 
methods, does not require precise isolation of the spots and identification of the background 
areas. This method would be rather straightforward, if there were no aberrant or outlier 
pixels that can strongly affect the slope of the linear regression. 
Each ratio estimate should be accompanied by some measure of quality demonstrating the 
level confidence in the obtained ratios. To determine spot quality we need to have a clear 
definition of a good spot, or a list of all possible distortions that may spoil the spot. The 
diversity of instrumental platforms and instrumental and biological factors that may 
influence the result makes formalization difficult and unlikely to be universal. Several 
attempts have been made to approach the problem (Buhler et al., 2000; Brown et al., 2001; 
Wang et al., 2001; Chen et al., 2002; Hautaniemi et al., 2003; Bylesjö et al., 2005). Generally a 
number of parameters characterizing the spot, such as signal-to-noise ratio, size, circularity, 
etc., are introduced. These parameters have to be combined into an overall quality value to 
be used as a confidence level in the follow-up analysis. As individual quality scores 
generally do not contribute equivalently to the composite quality score, we need to evaluate 
the weights that control the input of each individual score. For that, training procedures, in 
which the user classified a set of representative spots into a number of groups ranging from 
good to bad spots, were proposed (Buhler et al., 2000; Hautaniemi et al., 2003; Bylesjö et al., 
2005). This requires an expert to evaluate at least a couple of hundred spots to achieve a 
good approximation, which is a difficult and time-consuming task.  
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In this Chapter, we will present a set of advanced algorithms for microarray spot 
localization, quantification and quality control. We will deal with the rectangular array 
design. This is the most widespread of the designs used and is also exclusively used within 
our Institute. In this design, the spots are aligned horizontally and vertically and can be 
arranged in blocks containing different numbers of spot rows and spot columns. The 
developed algorithms aim at making analysis more resistant to array contamination and at 
eliminating user participation at all stages of image processing. The algorithms can be 
applied to analyze images in one-, two or multi-color microarray experiments. Specific tools 
have been also developed for ratio evaluation in the two-color comparative experiments.  
We present a “fully automatic” spot localization algorithm (Novikov & Barillot, 2006a), 
which is able to process images of different designs without specific user contribution. We 
also aimed to make it robust with respect to contamination and missing spots on the array. 
The developed algorithm is non-supervised and deterministic, ensuring reproducible 
results. It is assumed that the number of block rows and columns and the number of spot 
rows and columns within each block are available for analysis as input values. 
We have developed a statistical procedure that systematically searches and removes 
aberrant or outlier pixels (Novikov & Barillot, 2005b). This gives a higher level of confidence 
in the linear regression ratio estimates. However, as linear regression can give biased 
estimates when there is a high level of statistical noise (a low correlation between the Cy3 
and Cy5 color channels), we still keep estimates from the spot segmentation algorithm. 
However, after removing aberrant pixels the segmentation algorithm also gives more robust 
estimates, and there is a greater agreement in the ratio values obtained for both methods. 
We have developed a two-level segmentation approach: one intensity level is used to 
identify spots and the other one separates background areas. Pixels with intensities between 
these two levels are ignored (buffer zone). We apply the k-means adaptive pixel-clustering 
algorithm (Bozinov & Rahnenführer, 2002) to identify the spot and the background intensity 
levels. Pixels that are used in the adaptive clustering for the spot and background level 
estimation are selected from constrained intensity regions. Spot pixels are subject to further 
geometrical constraints.  
We have developed an original set of spot quality characteristics and a model that maps this 
set into an overall quality value. An automatic training procedure evaluates the contribution 
of each marginal quality characteristic into the overall quality (Novikov & Barillot, 2005a). 
This procedure is based on information from replicated spots, located on the same array or 
over a set of replicated arrays, and assumes that unspoiled replicated spots must have very 
close intensity ratios, whereas poor spots yield greater diversity in the ratio estimates. 
Conceptually this approach can be considered as a combination of the “empirical” (based on 
replicates) and “predictive” (based on quality characteristics) quality assessment methods 
(Ritchie et al., 2006). The obtained weights can then be used to establish a critical limit for 
each quality characteristic, such that if a spot’s characteristic exceeds its critical limit, the 
spot is declared a “bad” spot.  
The applicability of the developed algorithms has been tested and confirmed using 
simulated artificial images and experimental images of different array designs used within 
our Institute and CGH images obtained from the UCSF Cancer Center. These algorithms are 
included in the software package MAIA (http://bioinfo.curie.fr/projects/maia/), which 
offers a complete solution for microarray image analysis.  
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2. Spot Localization 

As for other automatic spot localization algorithms (Jain et al., 2002; Angulo & Serra, 2003), 
we take projections of the intensities in the pixel columns on the X (horizontal) axis and in 
the pixel rows on the Y (vertical) axis. However, instead of taking the overall intensity 
directly, we correct it by the amount of regularity in the corresponding row or column, so 
that bright but very irregular regions are systematically penalized. The developed algorithm 
transforms fluctuations of the intensity in each pixel row or column of the image into a 
special parameter that takes into account the regularity of these fluctuations.  

2.1 Spot regularity profiles 

Regularity components. For each pixel row or column we choose an intensity threshold, T,
and isolate continuous regions of pixels with intensities, Il, higher than T (bright regions): Il

> T, and lower than T (dark regions): Il ≤ T, l=1,…,m, where m is the number of pixels per 
row or column. Each bright region can be characterized by its center position μn(T), length 
λn(T) and mean intensity Fn(T). For each dark region we estimate its mean intensity, Bn(T).
We then define four components based on these estimates that contribute to the regularity 
parameter. The most important component is the overall intensity of the bright regions:  
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where N(T) and NB(T) are the numbers of bright and dark regions at the threshold level, T.
The three following parameters deal with the regularity of the bright regions. The first 
parameter penalizes deviations from the expected spot size, D, of the bright regions:  
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The second parameter ensures that inter-spot distance is not too small. That is, the centers of 
two bright regions (μn(T) and μn+1(T)) should not be closer than the expected spot size, D:
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where (x)+ = x, if x > 0 and (x)+ = 0, if x ≤ 0. The third parameter controls the number of 
bright regions:  

       ( )+−= 1)()(),(3 HNTNHTW     (4) 

where H is the inter-spot distance and N(H) is the expected number of spots in the 
corresponding pixel row or column. N(H) can be estimated by dividing the number of row 
or column pixels by H. As we do not expect the number of bright regions to be more than 
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N(H), this has to be penalized. On the other hand, we cannot impose a lower bound for 
N(T), as some spots may be missing, but the structure is preserved.  
Overall regularity parameter. The intensity component (1) and the three regularity 
components (2), (3) and (4) are combined into an overall regularity parameter:  

{ }),(),(),(exp)(),,( 332211 HTWDTWDTWTSHDTR γγγ −−−=  (5) 

where γ1, γ2 and γ3 are weights determining the contribution of each regularity component. 
Since all these components are relative quantities, we expect that none will be over-
weighted, and hence the weights can be equalized: γ =γ1 =γ2 =γ3, where γ is provided by the 
user. In our analysis we always take γ = 2, and we have had no problems with the 
localization for different experimental designs. However, the robustness of the analysis 
would be increased if γ (or even γ1, γ2 and γ3) were chosen more specifically. 
The threshold level, T, can be best determined using a special optimization procedure which 
searches for T from the interval [Imin;Imax] maximizing R(T,D,H):
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where Imin = min(Il) and Imax = max(Il), l=1,…,m. Eq. (6) represents the final expression for the 
regularity parameter. We then calculate a set of regularity parameters for each pixel row i or 
column j, leading to a regularity profile in the Y (Ri(D,H)) and X (Rj(D,H)) directions.  
Spot size D and inter-spot distance H. Although possibly available from the experimental 
design, spot size, D, and inter-spot distance, H, are not required as prior values. We assume 
only that D and H are related as D = H(1-α), where α is the ratio of the inter-spot gap to the 
inter-spot distance and should be provided by the user. A very precise value of α is not 
essential. We always take α = 0.25, and it appeared to be very stable with respect to different 
array designs. As D is directly available from H, we can omit D from the notation of the 
regularity parameter, so that R(H) will be used instead of R(D,H).
We can obtain H0, an initial approximation for H, by dividing the total number of pixels in 
the X or Y direction of the array by the total number of spots in the corresponding direction. 
This is only a rough estimate, but it is sufficient for building the regularity profiles, Rk(H),
where k = i for the Y direction and k = j for the X direction (Eqs. (5) and (6)).  
We could have, using the profiles obtained, estimated D by dividing the number of pixel 
rows or columns with high regularity by the total number of spots in the Y or X directions, 
respectively. However, the spots are almost never perfectly aligned and they can get mixed 
up and become unrecognizable on the one-dimensional axis irrespective of the cutoff level 
chosen for the regularity profile. This leads to overestimation of the lengths of the regions 
with high regularity and consequently to an overestimate of D.
If all spots within each block overlapped completely in the projections, we could estimate H
as the ratio of the number of pixel rows or columns with a regularity higher than the 
selected level to the total number of spots in Y or X directions, respectively. However, as the 
spots within a block may, even after projecting pixel rows and columns, be separated by 
dark gaps, the length of the bright regions, needed to evaluate H, may be underestimated. 
To ensure realistic H we overlap the spots by superimposing the given profile with itself 
shifted to the left or right by a certain number of pixels. Complete overlapping of the 
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neighborhood spots can be achieved by setting the number of pixels used in the profile 
shifting to the correct value for the inter-spot distance, H. We assume that the neighborhood 
spots are completely overlapped when the number of dips (regions with a regularity lower 
than the selected level) in the overlapped regularity profile should not be larger a limit 
defined as the number of blocks plus one. A small number of dips can indicate that 
neighboring blocks are also indistinguishable.  
We search for the highest level of regularity profile that gives the largest number of dips but 
not larger than the defined limit. The corresponding H is then considered as the final 
estimate. If number of dips is larger than the defined limit for any level of regularity (and 
correspondingly for any H), then the regularity level giving the lowest number of dips is 
selected, despite being greater than the defined limit. This situation occurs for relatively 
bright contamination in the positions where there are no spots according to the array design. 
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Fig. 2. Intensity (solid line) and regularity (dashed line) profiles for microarray image 
segment (inset) obtained by projecting on Y axis. 

The advantage of using regularity profiles instead of simple intensity profiles is 
demonstrated in Fig. 2. The regularity profiles (dashed lines) ensure a larger dynamic range 
(signal to background) than the intensity profiles (solid lines). This leads to better 
identification of the background regions where it would be expect to find a separation 
between different spot rows or columns.  
Note that each of the approaches that use intensity projections (e.g. Jain et al., 2002; Angulo 
& Serra, 2003; Brändle et al., 2003) could be reinforced if, instead of simple projections, 
measures based on the regularity parameter were used. 
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2.2 Generation of the localization grid 

Block separation. First, we use the regularity profiles to look for the borders between the 
blocks. To increase robustness, the whole array is divided into segments (Fig. 3). If we need 
to identify the borders between the blocks in the X direction, we take segments in the Y 
direction with the height of the segment, in pixels, being equal to the height of the image in 
pixels divided by the number of blocks in the Y direction (NBY). We identify the block 
borders in the Y direction by taking segments in the X direction with the width of the 
segment, in pixels, equal to the width of the image in pixels divided by the number of blocks 
in the X direction (NBX).  

Fig. 3. An example of the separation of the microarray image into segments. There are four 
sets of tentative block separators and four sets of tentative external borders in the X 
direction, as four segments (according to the number of blocks) are isolated in the Y 
direction. Similarly, four tentative block separators and four sets of tentative external 
borders can be built in the Y direction. 

If the blocks are well separated, we can proceed in the following way. For each segment we 
identify positions separating the blocks by looking for the maximal intervals between the 
peaks in the regularity profiles. Thus we obtain NBY (in X direction) or NBX (in Y direction) 
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possible sets of block separations. The best set is the one that has the most regular structure. 
We calculate the median width of the blocks in NBY sets and the median height of the 
blocks in NBX sets, and the set, in either the horizontal or vertical separation that gives the 
smallest deviation from the corresponding median is selected as a final one.  
However, this approach is not applicable for arrays where the distance between two 
neighboring blocks is similar to the distance between the neighboring spots. In this case we 
take advantage of the fact that the blocks are regularly distributed over the array, and we 
place the borders equidistant between the external borders of the blocks. These regions have 
to be long enough to be considered as initial spots in the blocks. We require that the first 
high-level region must be longer than βD, where β is provided by the user and characterizes 
the filtering properties on the edges of the array. A default value of β = 0.2 had been found 
to be the most relevant for the microarray images of different designs and noise levels that 
we have tested. The external borders of the blocks are calculated for all segments described 
above (Fig. 3), and the median estimates are taken. We use two localization iterations to 
increase the precision of block separation. The first approximation of the grid is used to 
adjust the borders of the blocks at the second iteration.  
Spot localization. After blocks are separated, we have to identify the borders between the 
spots within each block. Although it may appear straightforward to use regularity (or 
intensity) profiles to draw lines at the positions of minimal regularity of the corresponding 
profiles to separate the neighboring spots this often results in errors, because the positions of 
the minima can be due to random regularity fluctuations. Therefore, we have developed a 
robust procedure searching for the spot separations. It uses the same optimization 
procedure as for the overall regularity parameter, but instead of the intensity, Il, we use 
regularity profiles in the X (Rj(H)) or the Y (Ri(H)) directions. An example of the row 
regularity profile (Y direction) for a one block (shown in inset of Fig. 2) is given in Fig. 2 in 
dashed line. Applying a set of criteria represented by Eqs. (1), (2), (3) and (4) for each block 
we can build up a vertical regularity parameter RY(Ri*,H) (Eq. (5)) using a row regularity 
profile, Ri(H), and a horizontal regularity parameter RX(Rj*,H) (Eq. (5)) using a column 
regularity profile Rj(H). The parameters RY(Ri*,H) and RX(Rj*,H) are dependent on the 
threshold levels Ri* and Rj*, and should ensure the highest regularity of the regularity 
profiles Ri(H) and Rj(H) (see Eq. (6)). However, in difference to Eq. (6), Ri* in RY(Ri*,H) is 
determined from the interval between min(Ri(H)) and max(Ri(H)), where i is the row 
number; and Rj* in RX(Rj*,H) belongs to the interval between min(Rj(H)) and max(Rj(H)),
where j is the column number.  
Note that the optimized values of RY(Ri*,H) and RX(Rj*,H) are of no use in this context. The 
middle positions of the intervals in the regularity profiles lower than the optimal threshold 
level are taken as the positions separating spot rows or columns. 

3. Spot Quantification 

After spot localization step, we assume that the spots are identified and well localized in 
squares (called spot cells), so that each spot cell can be processed independently of the 
others. We calculate the ratio of the spot using either a linear regression or a segmentation 
(spot contouring or spot isolation) approach. 
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3.1 Ratio estimation based on linear regression 

The linear regression approach represents the ratio as the slope of the linear regression fit of 
the pixel intensities in two channels (Fig. 4). We use orthogonal regression (Kendall & 
Stuart, 1979, Dissanaike & Wang, 2003) since measured fluorescence intensities are 
statistically distorted in both color channels. Spot segmentation is unnecessary with this 
method, as background pixels are concentrated at the origin of the linear regression plot and 
do not influence the slope of the regression line (Fig. 4). However, outlier or aberrant pixels 
within the spot cells, even in small numbers, can strongly influence the regression line, thus 
biasing the ratio. With the aim to fully exploit the advantages of the linear regression 
approach we tried to reinforce this procedure by systematically filtering out aberrant pixels. 
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Fig. 4. Estimation of the ratio using linear regression fit for a good spot with a correlation 
coefficient of 0.99 (ratio = 0.339). The background pixels are grouped near the origin of the 
linear regression plot. 

Different approaches exist to detect statistical outliers in experimental data (Rousseeuw & 
Leroy, 2003; Atkinson & Riani, 2000). Well-advanced high-breakdown algorithms 
(Rousseeuw & Leroy, 2003) or forward search algorithms (Atkinson & Riani, 2000) are based 
on repetitive resampling of experimental data and iterative linear regression approximation. 
This makes these algorithms computationally infeasible for microarray image analysis, 
where thousands of spots, each one containing 100-500 data points (pixels), should be 
processed in seconds. Therefore, we have to look for more approximate algorithms, which, 
however, can ensure higher efficiency. For microarray images, we expect that the majority of 
the spots should not have outliers, and the number of outliers for possibly contaminated 
spots should not be too high. Therefore it would be advantageous to have an algorithm that 
could quickly identify outlier presence, without being involved in time-consuming 
iterations. With this aim we have adopted the backward search algorithm with single-case 
diagnostics (Rousseeuw & Leroy, 2003). The advantage of this algorithm is that if the 
procedure can not identify an outlier at the first iteration, it proceeds to the next spot, thus 
saving processing time. Although single-case diagnostics are known to be less efficient 
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(Rousseeuw & Leroy, 2003) for the data with tight groups of outliers, in our work we rarely 
had problems: in microarray image, even if several aberrant pixels form a spatial cluster 
(Fig. 5), they are often very different at the intensity scale (at least in one of two color 
channels). As outlier intensities are widely distributed, the removal of even one of them 
changes the quality of the linear regression noticeably, facilitating the one-pixel (or single-
case) backward search procedure for spot quantification.  
The backward search procedure, in our implementation, examines suspicious pixels by 
evaluating the quality of the linear regression fit with and without the suspicious pixel. We 
quantify the fit quality by the residual variance, s2. The smaller s2 is, the closer the linear 
regression line is to the experimental data. The ratio of the s2 values is calculated for the fit 
with the tested pixel and for the fit without. If this ratio is larger than a critical value of the 
F-distribution at a user-defined confidence level, the pixel will be marked as aberrant. We 
select pixels with the highest intensity in either of two channels first and then select pixels 
having the largest deviation from the fitted regression line. To take into account the fact that 
the distortions caused by pixels from the top of the intensity scale and by pixels lying off of 
the linear regression line, may be different, we apply different confidence levels for the F-
statistics for these pixels. In our analysis we use 0.01 as a confidence level for the pixels from 
the top of the intensity scale and 0.1 for the pixels lying off of the linear regression line.  
For the high-intensity pixels we also perform another test to determine how far their 
intensities are from the averaged intensity of the other pixels within the spot cell. This 
detects pixels, far away from the other pixels, that do not distort the linear regression line. 
Although these pixels may not change the ratio, they could be considered as aberrant pixels, 
as we expect to see an almost continuous distribution of pixels intensity (Fig. 4). The 
procedure performs iteratively until no more aberrant pixels are detected. 
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Fig. 5. Estimation of the ratio using linear regression fit for a spot with aberrant pixels (red 
crosses). The estimated ratio with the aberrant pixels is 0.45 (a), when the aberrant pixels are 
removed it decreases to 0.37 (b). The estimated ratios for the other two spots from the same 
triplicate are 0.342 and 0.332. 
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An example of the outlier detection is presented in Fig. 5. It is important to note that the 
regression approach is capable of detecting contamination pixels that are geometrically 
inseparable from the spot. Therefore, the developed procedure can be considered not only 
as a procedure for correcting ratio recovery, but also as a procedure to repair the spot and to 
improve the quality of experimental material. It requires, however, that the contamination 
clearly deviates from the straight regression line, which is defined by the majority of “good” 
pixels from the spot. The filtering procedure can detect up to ~30% of aberrant pixels with 
respect to the number of spot pixels. For the spots with larger number of aberrant pixels, a 
safer way would be to flag out these spots rather than to try to identify all aberrant pixels. 
Besides much higher computational complexity (and hence processing times), high-
breakdown filtering algorithms may have difficulties to distinguish between contaminating 
pixel clusters and useful spots, when these become comparable in size, and contamination is 
highly correlated in two color channels.  
One potential problem of linear regression approach is when one image (Cy3) is shifted 
relative to the other (Cy5). As this shift increases, the correlation between the two channels 
decreases rapidly, and linear regression fit becomes poorly defined. To solve this problem 
we have developed a special procedure for the automatic identification and removal of shift 
between two images. The procedure moves one image with respect to the other one to 
obtain the largest correlation coefficient for a number of representative spots. These spots 
are selected according to two criteria: they should be bright enough, but not beyond the 
dynamic range of the registered intensities; and they should not contain pixels a lot brighter 
than most of the pixels in the corresponding spot cell.  

3.2 Ratio estimation using spot segmentation 

The spot segmentation approach identifies spots and background areas. The ratio is then 
defined as

r = (FCy5-BCy5)/(FCy3-BCy3)    (7) 

where FCy5(FCy3) is either the mean or median estimate of the spot intensity in the Cy5(Cy3) 
channel, and BCy5(BCy3) is either the mean or median estimate of the background intensity in 
the Cy5(Cy3) channel.
We have developed a multi-level segmentation approach where a segmentation algorithm is 
first applied to isolate spots and then to identify background pixels. The algorithm is 
applied to the combined image: Fi = FiCy5ACy5+FiCy3ACy3, where Fi is the combined intensity of 
the i-th pixel, FiCy5(FiCy3) is the intensity of the i-th pixel in the Cy5(Cy3) color channel, and 
ACy5 and ACy3 are the normalization constants: Ak = min(MCy5,MCy3)/Mk, k = {Cy5,Cy3}, where 
MCy5(MCy3) is the mean intensity of the pixels located along the borders of the given spot cell 
in the Cy5(Cy3) color channel.
The spot is isolated by establishing the signal level, Ls, such that all pixels with intensities 
higher than Ls will be classified as potentially belonging to the spot. We used the k-means 
adaptive pixel-clustering algorithm (Bozinov and Rahnenführer, 2002) to do this. However, 
we had problems when this algorithm was applied to segment spots with relatively smooth 
edges. Some pixels may be clearly brighter than the background, but not bright enough to 
be included into the spot. To regularize the solution, we establish an intensity limit, U, such 
that only pixels with the intensities higher than U participate in the spot segmentation.  
We use Chebyshev's inequality (Fisher & van Belle, 2003) to define U as M+W/(1.35p½),
where p is a user-defined confidence level for the intensity distribution of background 
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pixels, M is the median and W is the inter-quartile distance of pixel intensities located along 
the borders of the given spot cell (these pixels are expected to be purely background pixels). 
Then pixels with the intensities higher than U are classified according to the k-means 
adaptive pixel clustering algorithm to estimate Ls.
After selecting the bright pixels some geometrical constraints need to be imposed. We define 
a spot circle, centered on the center of mass of all the bright pixels from the given spot cell, 
with the radius (0.5Z/π)1/2, where Z is the number of pixels with intensities higher than Ls. If 
it turns out that the number of bright pixels within the circle is relatively small (<0.5Z), we 
increase the radius by one until the number of pixels covered by the circle becomes equal or 
higher than 0.5Z. For spots with a circular shape it should happen at the first trial. More 
attempts are needed for spots with more peculiar shapes (e.g. donut-like). The bright pixels 
within this circle are considered as belonging to the spot. All other bright pixels in the same 
spot cell are considered as potential space outliers. Further steps resemble the seeded region 
growing (Yang et al., 2002). The space outliers are converted into spot pixels only if one of 
their neighbors is already a spot pixel. It performs iteratively building up a cluster of bright 
pixels, which are geometrically inseparable from the originally defined spot pixels. These 
pixels constitute a spot and the remaining bright pixels are considered as space outliers that 
should be ignored during further analysis.
Spot pixels with excessively high or low intensity with respect to the majority of spot pixels 
can also be discarded. The admissible range is defined as "median of spots pixels" ± "inter-
quartile distance of spot pixels"/(1.35p½), where p is a user-defined confidence level for spot 
pixels. This filtering is appropriate for flat spots with large amount of pixels. 

Fig. 6. Segmentation examples: pixels within turquoise contours represent spots and pixels 
outside gray contours represent background areas.

Finally, we identify the areas used to calculate the background levels, BCy5 and BCy3. The 
different approaches for calculating the background vary considerably (Yang et al., 2002; 
Bozinov & Rahnenführer, 2002; Bengtsson & Bengtsson, 2006; Axon Instruments, Inc. 2005). 
We search for the background level, Lb, such that all pixels with intensities lower than Lb are 
classified as background, and pixels with intensities from the interval [Lb;Ls] comprise the 
buffer zone ignored in further quantification. Lb, in our implementation, is estimated from 
the k-means adaptive clustering applied to pixels with intensities from the interval [M;U].
This procedure identifies background areas within a spot cell. Similar to (Axon Instruments, 
Inc. 2005) the background estimates, BCy5 and BCy3, are taken from all background areas 
within approximately two spot-cell-size regions centered at the current spot.  
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Several examples of segmentation for spots of different shapes and geometries are shown in 
Fig. 6. As one can see, the developed algorithm is able to produce predictable contours for 
broad range of different spots. 

3.3 A combined approach to unique ratio estimation 

The performance of the linear regression approach depends on the level of statistical noise 
in the detected images and hence on the level of correlation between two (Cy3 and Cy5) 
color channels. For images with a high correlation coefficient (~0.90), the linear regression 
approach is often better than the segmentation approach, and filtering is more effective, as 
any contamination is better recognized by the linear regression fit. For noisier images, the 
regression approach is less efficient in filtering and may also produce biased estimates. For 
such images, the segmentation algorithm generally demonstrates better performance. 
A general strategy to estimate the ratios can be composed of two steps. First, linear 
regression filtering is applied to each spot. This removes aberrant pixels for highly 
correlated signals, and leaves the data largely unaltered for noisy images. Then 
segmentation approach is used for the final ratio estimation according to Eq. (7), where 
F{Cy5,Cy3} and B{Cy5,Cy3} are the mean estimates for the spot and background intensities, 
respectively. Mean estimates are more precise (Fisher & van Belle, 2003), but can be affected 
by outliers. However, as the outliers have been already removed by the linear regression 
filtering, we can use the mean values. Although estimation using the segmentation 
estimator may be not as good as the linear regression estimator for highly correlated spots, 
the difference is generally so unimportant that we can sacrifice some quality for generality. 
We call this two-step algorithm the regression filtered segmentation estimator (RFSE). 
In general, the idea to perform preliminary filtering of microarray images is not new. There 
have been a number of publications reporting application of the median filter (Glasbey & 
Ghazal, 2003), top-hat filter (Yang et al., 2002; Glasbey & Ghazal, 2003) or a set of 
morphological operators (Angulo & Serra, 2003). However, all these techniques, while 
reducing noise in images, also change intensity levels of the majority of pixels on the array, 
regardless of whether these pixels are outliers or not. For example, existing filtering 
procedures may dissolve micro-cluster of aberrant pixels (like the one shown in Fig. 5), so 
that it will not be seen any more. However, exceptionally high intensities from the outlier 
cluster will implicitly influence the intensity of both, the neighboring “good” pixels and the 
new “good” pixels that will substitute the outliers. This may result in biased intensity and 
ratio estimates. Contrary to that, our approach specifically eliminates outlier pixels, 
otherwise not distorting data. It also allows for visual examination of the contaminating 
pixels to evaluate sources of possible problems in microarray experiment. 

4. Spot Quality 

Each ratio estimate should be accompanied by some value of quality reflecting the level 
confidence in the obtained ratios. This value is derived from a set of quality characteristics 
generated by spot quantification procedures (linear regression and spot segmentation).  
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4.1 Spot characterization by quality parameters 

The generated quality characteristics (x) may be defined on any domain, but we scale them 
(q(x)) to fit the range between 0 (bad spot) and 1 (good spot). This facilitates further quality 
analysis. For scaled quality characteristics we use another term: quality parameters.
Coefficient of determination (CD) of linear regression signifies the degree of linear 
relationship between the intensities in the Cy3 and Cy5 channels. High values of CD
(approaching 1) are expected for good spots. Low values suggest either relatively bright but 
non-correlated contamination, or strong statistical noise normally characterizing low-level 
(or missing) spots. q(CD) = CD.
Durbin-Watson statistic (DWS) evaluates the presence of the first-order autocorrelation in 
the residuals of the linear regression fit. It ranges from 0 to 4, 0 being a positive correlation 
and 4 being a negative correlation. A DWS value close to two indicates that the residuals are 
uncorrelated and the model is appropriate. Large deviations from two, resulting from 
systematic patterns in the residuals plot suggest that the spot cannot be modeled in terms of 
a simple linear regression. q(DWS) = 1-|DWS-2|/2.
Spot contamination is the number (SC) of the aberrant pixels (within the spot contours) 
flagged out by the filtering procedure. q(SC) = 1-SC/Z, where Z is the number of pixels 
within the spot contour. 
Diameter of the spot: D = 2(Z/π)½. As the true value for the spot diameter may be difficult to 
establish, we use a typical value taken as the median diameter over all spots on the array. 
Spots with exceptionally small or large diameters should be penalized. q(D) = exp{DT-D}, if 
D>DT and q(D) = exp{D-DT}, if D<DT where DT is the typical diameter.  
Geometrical symmetry parameter measures deviation of the contoured spot from the ideal 
circle. We divide both the real spot and the ideal circle into eight segments (pie slices 
defined as [kπ/4;(k+1)π/4], k = 0,…,7) and we count the number of pixels belonging to the 
spot (Zsi, i = 1,…,8) and to the circle (Zci, i = 1,…,8) for each segment. The sum of the absolute 
relative differences GS = |Zsi-Zci|/Zci is then taken as an indicator of quality. For ideal 
circular spots GS should approach 0, whereas highly deformed (un-circular) spots can be 
recognized by high GS values. q(GS) = exp(-GS).
Intensity symmetry of the spot is defined as IS = |Fi-F|/F, where Fi, i = 1,…,8 are the 
mean intensities for the same 8 segments and F is the mean intensity within the spot. 
Although a spot may have perfect circular shape, it may contain very bright (or dark) and 
highly concentrated groups of pixels originating from pieces of dust or other contamination. 
q(IS) = exp(-IS).
Coefficient of variation of two ratio estimates: CVR = 2½|RR-RS|/(RR+RS). Despite the 
different methods of ratio estimation (one by the linear regression approach (RR), and the 
other by the segmentation algorithm (RS)), the variation between the two obtained ratios 
should be as small as possible. Large variations between the two estimates may indicate a 
problematic spot. q(CVR) = exp(-CVR).
Uniformity of the background along the grid lines separating neighborhood spots is 
defined as UB = |Bi-B|/B, where Bi, i = 1,…,8 are the mean intensities in 8 segments of the 
grid line around the spot, and B is the mean intensity for the whole grid line around the 
spot. Large UB values may discover presence of relatively bright contamination around the 
spot, large variability in the background or merged neighboring spots. q(UB) = exp(-UB).
Absolute level of background (AB) calculated from the local area around the spot (AB = 
max(BCy5,BCy3)) is compared to the median background level over all spots on the array. 
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Spots with exceptionally high AB values may indicate the presence of the contamination 
areas, which are larger than the size of the spot. q(AB) = exp(1-AB/ABT), if AB>ABT and q(AB) 
= exp(AB/ABT-1), if AB<ABT. where ABT is the typical background level.
Signal (S) is defined as S = min(FCy5 - BCy5,FCy3 - BCy3). q(S) = 1, if S>ST and q(S) = exp(S/ST-1),
if S<ST, where ST is the median signal over all spots on the array. 
The developed quality parameters, although not optimal, have led to reasonable results for 
most of the experimental and simulated situations we tested. Of course, there may be a 
possibility to formalize some of these parameters more precisely and/or to develop new 
parameters accounting for other types of distortions. 

4.2 Spot quality analysis 

We consider two aims of spot quality analysis. The first is to combine the marginal quality 
parameters into an overall quality value. This value can be used either to flag out directly 
spots with a quality lower than a user-defined threshold, or, in the follow-up image analysis 
procedures (normalization, classification, clustering, etc.) as a parameter characterizing the 
level of confidence in the obtained Cy5/Cy3 ratios. The second aim is to identify a critical 
range for each quality characteristic. If a certain quality characteristic of the spot falls in this 
range, the corresponding spot is classified as a “bad” spot.  

Fig. 7. The correspondence between the quality characteristics, quality parameters and 
overall quality value. 

Overall quality. We used the following definition for the overall quality value: 
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components into the overall quality value. A link between the weight wi and the critical 
value xilim can be established for each quality characteristic: 

{ } ( ){ }limlim lnln iii xqQw =  or { }= − iw
ii Qqx /1lim1lim   (9) 

where Qlim ∈[0;1] is the user-defined overall quality threshold, and qi(xilim) is the quality 
parameter calculated for xilim. The critical value xilim sets up the limit such that if a certain 
characteristic i exceeds this limit, the corresponding quality parameter qi(xilim) will become 
lower than Qlim. The correspondence between xi, xilim, qi(xi), qi(xilim), wi, Q and Qlim is
demonstrated in Fig. 7. 
Quality weights wi. The experimental quality parameters, qi, are directly available from the 
quantification procedure, whereas the weights wi (or the critical values xilim) are unknown 
and are not easily guessed or derived from theory. Therefore, the problem of spot quality 
analysis becomes a problem of weights (wi) estimation. This can only be solved if additional 
information is available. Here we consider three possibilities: 
1. The additional information may come, for example, from the user expertise. The user 

has to classify the spots manually (Buhler et al., 2000; Hautaniemi et al., 2003; Bylesjö et 
al., 2005) and assign a quality value to each spot from a representative subset. These 
values are then used for training the model (8) leading to a combination of the weights 
(wi) such that the overall quality values reproduce the user classification reasonably 
well.

2. We can manually apply different combinations of the weights wi and visually 
appreciate, which spots have been flagged out. The trials must be continued until most 
of the user classified "bad" spots are eliminated by the chosen combinations of the 
weights.

3. The weights can be estimated automatically using information available from replicated 
spots on the same array or over a set of replicated arrays. Unspoiled replicate spots 
should have very similar ratio values. Large differences between the observed ratios in 
the replicate spots would signal that some spots from this replicate were irregular. We 
formalize this approach by first defining the quality value for the replicate: 

{ }{ }iw
kjiijk qQ minmin=  (10) 

where qkji is the i-th quality parameter of the j-th replicated spot in the k-th replicate. Then 
we require that the ratio variation coefficient in the k-th replicate, Vk, is proportional to the 
logarithm of Qk:

{ }− iw
kji

ijk qV minminln~

  (11)

The log transform is the most “natural” way to convert [0;1] scale of Qk into [0;∞) scale of Vk.
Finally, exponential transform of Eq. (11) yields  

      ( ) { }=− iw
kji

ijk qVV minminexp  (12) 
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where V is the user-defined characteristic ratio variation coefficient. The weights wi can be 
estimated from the best fit of the experimental quality values Qk to the exponentially 
transformed ratio variation coefficient Vk (Novikov & Barillot, 2005a). If certain quality 
factors do not influence the shape of the experimental quality curve Qk (Eq. (10)), the 
corresponding weights will be set close to 0. If a certain effect shows up in only a small 
number of spots, it may be neglected by the optimization procedure, and the corresponding 
weight will be erroneously small. In this case, manual correction of the weights would be 
necessary.  
In our quality analysis algorithm, user participation is limited to the definition of the 
characteristic ratio variation coefficient, V. This is somewhat simpler than deciding on the 
quality of several hundred spots, which is used to teach the algorithm in the manual 
approach. However, as with other solutions, this algorithm requires representative images 
to train the model. It is impossible to evaluate confidently the weight of the contribution of 
the diameter quality parameter, for example, if all spots in the array have the same 
diameter. Therefore, a careful selection of training images containing a realistic diversity of 
all possible distortions and artifacts is needed. 
In (Novikov & Barillot, 2005a) we have also demonstrated possibilities to perform quality 
analysis based on replicated spots from different arrays and a possibility to apply quality 
weights obtained from the analysis of one training image, which should contain replicated 
spots, to other arrays, which may not contain replicates. The latter example attempts to 
reproduce an important possibility of designing microarray experiments. A small number of 
training arrays with replicated spots and representative diversity of possible artifacts can be 
measured and analyzed. The obtained results can then be used to evaluate the quality of 
other arrays of similar design, which may not contain replicated spots.  
Follow-up image analysis. As it was mentioned earlier, the overall quality value, Q (Eq. 
(8)), can be used as a parameter characterizing the level of confidence in the obtained 
Cy5/Cy3 ratios. If, for example, n ratios should be averaged, the weighted mean would 
ensure a more robust estimate for the average: 
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where rl is the Cy5/Cy3 ratio and Ql, is the corresponding overall quality value (l = 1,…,n). 
The weighted coefficient of variation is defined as 
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Note that the ratio variation coefficient Vk can be determined from Eq. (14), if we set Ql = 1, l 
= 1,…,n, with n being the number of spots in a replicate. 

5. Testing image processing algorithms 

5.1 Image Simulation 

In (Novikov & Barillot, 2005b) we have described a software component for Monte-Carlo 
simulation of microarray images. The simulator accounts for statistical noise and different 
types of distortions, such as non-specific hybridization and dust. As the values of the ratios 
are exactly known in the simulation experiments, it allows us to test and compare 
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objectively different ratio estimation algorithms. The general model for the two-color (Cy3, 
Cy5) microarray image is given by:  
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where NS is the number of spots and ND is the number of dust clusters, cksx and cksy are the 
coordinates of the center of a spot, ckdx and ckdy are the coordinates of the center of a dust 
cluster, ρs and ρd are the approximate radiuses of the spot and dust cluster, respectively, Is

and Id are the fluorescence intensity in the center of the spot in the Cy3 color channel and in 
the center of the dust cluster, respectively, and r is the ratio of the test and control samples. 
Dust is represented by the random distribution over the array of clusters of pixels of varying 
brightness. We consider that these pixel clusters have an identical shape to the spots and 
therefore the same analytical representation is used for an ideal spot shape and dust cluster:  

( ) ( ) ( ) ( ){ }( )42244
2exp),,,,,( ρρ yxyxyx cjcicjciIIccjig −−+−+−−=  (17)

The parameters characterizing the spots (cksx, cksy, ρs, Is and R) are user-defined. For example, 
the coordinates cksx and cksy, the radius ρs and the ranges for x and y for each spot are defined 
from a user-defined array design. The user should also specify the number of dust clusters 
ND on the array. The other parameters characterizing the dust are random variables, and the 
probability laws for their generation is a matter of choice. We use uniform distributions for 
ρd (in the interval 0 to ρm) and Id (in the interval 0 to Im), where ρm and Im are a user-defined 
maximal dust cluster radius and maximal dust intensity, respectively. We also assume that 
ckdx and ckdy are uniformly distributed over the array. Statistical laws of the dust 
characteristics can generally be different in the two (Cy3, Cy5) channels. 
In the developed simulation model we also account for the nonspecific hybridization and 
statistical noise:  

SBkBkkkk GjiGBBjiFjiF ),(),(),(
~ ση +++=    (18) 

where k represents either Cy3 or Cy5, Bi and ηBk are the user-defined average and noise-to-
signal ratio of nonspecific fluorescence intensity in the color channel k, σ(i,j) is the standard 
deviation of the pixel statistical noise, and GB and GS are independent Gaussian random 
variables with zero mean and unit standard deviation. The exact representation for σ(ι,j) is 
defined by the experimental set-up. There are currently three possibilities: σ(ι,j) can be (i) 
constant, (ii) proportional to the signal, or (iii) proportional to the square root of signal. The 
type and quantitative characteristics of the statistical noise are defined by the user.  

5.2 Evaluation of the noise resistance using artificial images  

All artificial images were generated using the same array design: 4x12 blocks and 21x21 
spots within each block with the inter-spot distance of 15 pixels and the inter-block gap of 20 
pixels. For all spots in the generated arrays the spot radius, ρs, was about 4 pixels, the 
intensity, Is, in the Cy3 color channel was 5000 and the ratio, r, of the Cy5 and Cy3 channels 
was 3. Non-specific hybridization was generated using Bk = 1000 and ηBk = 0.5. The standard 
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deviation of the statistical noise, σ(i,j), at each pixel was proportional to the signal at the 
corresponding pixel with the noise-to-signal ratio of 0.1. We also added randomly 
distributed dust clusters with the maximal intensity, Im = 65535, and maximal radius, ρm = 2 
pixels. Generated images differ in the number of dust clusters, ND.

      

      
Fig. 8. Fragments of artificial microarray images with 4x12 blocks and 21x21 spots per block: 
a) the fraction of the bright spots is equal to 15%; no contamination; b) the same image with 
the generated grid; c) randomly distributed contamination spots are added; the percentage 
of the bright correct spots is 40% and the number of the contamination spots is equal to the 
number of the correct spots (NS = ND); d) the same image with the generated grid. 

Localization. We studied the influence of the amount of bright (visible) spots and the level 
of contamination on the spot localization. Two exemplary artificial images are presented in 
Fig. 8. One (Fig. 8a) containing only 15% of bright spots randomly distributed over the 
image, and the other one (Fig. 8c) with randomly distributed contamination spots. For the 
contaminated array, and the number of dust clusters was equal to the number of true spots 
(NS = ND). 
Grid placement depends on the distribution of the spots over the array. Therefore, we 
generated 100 images, each with a random spot distribution, and counted the amount of 
grids that needed user intervention. For the images without contamination, only 10 of 100 
images gave misplaced grids. This happened when first or last spot rows or columns are 
empty, so that the algorithm shifted the grid by one row or column. For contaminated 
images grid misplacement occurred in 7 of 100 images. This took place when false spots 
were recognized as the real spots by the algorithm. Examples of the correctly generated 
grids in both cases are given in Figs. 8b and 8d. 

a b

c d
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Fig. 9. Histograms of the ratio estimates: a) ratio of means (red) and ratio of medians (black) 
for the dust-free image; b) ratio of means (red), un-weighted RFSE (blue), weighted RFSE 
(green) and weighted ratio of medians (turquoise) for the contaminated image; c)  weighted 
RFSE (green) and weighted ratio of medians (turquoise) for the contaminated image, ratio of 
means (red) and ratio of medians (black) for the dust-free image; d) ratio of means (red), 
weighted ratio of means (green) and weighted ratio of medians (turquoise) for the 
contaminated image. 

Quantification and Quality. We investigated the influence of the level of contamination on 
the spot quantification. We used the same array design as before (Fig. 8) with one exception: 
all true spots were bright and visible. We compared RFSE ratio with the ratio (7) where 
F{Cy5,Cy3} and B{Cy5,Cy3} are either the mean (ratio of means) or median (ratio of medians) 
estimates. We also compared the weighted and un-weighted mean estimates for the average
r (Eq. (13)). The un-weighted characteristics were obtained from Eq. (13) by setting all Ql, l = 
1,…,n to 1. The weighted characteristics were calculated with the overall quality values Ql

available from the quality analysis algorithm. As all spots from the simulated image can be 
considered as replicates, having the same theoretical ratio (r = 3), we artificially split up the 
total number of spots into the groups of three closely placed spots. These groups, regarded 
as independent triplicates, can be used to calculate the experimental quality values Qk (Eq. 
(10)) and to build up the corresponding quality plot, Qk versus Vk, according to Eq. (12). The 
weights wi are estimated from the best fit in Eq. (12). For each group we calculated the 
weighted and un-weighted means of ratios using Eq. (13). These averaged ratios were 
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collected in histograms presented in Fig. 9. We expect the best estimators to provide 
distributions centered on the true ratio (r = 3) with the least spread around this value. 
As expected, the ratio of medians gave a broader distribution for the dust-free image (Fig. 
9a). Neither regression filtering nor quality control could improve observed estimates: the 
histograms of obtained ratios with or without filtering or with or without quality control 
were indistinguishable in the figure. For the contaminated image (Fig. 9b), ratio of means 
without filtering or quality control produced an additional peak (red line) reflecting 
contribution of dust clusters. RFSE estimate eliminates that peak (blue line) and the 
application of quality weights further improves the estimation (green line). These measures 
are so efficient that the resulting histogram after regression filtering and quality weighting 
became almost equivalent to the histogram of the ratios for the dust-free image (Fig. 9c). The 
ratio of medians is a robust estimate, but less accurate than RFSE. Fig. 9d demonstrates the 
power of quality control. Linear regression filtering was not applied in this case. The 
histogram of ratios of means had the same peak of aberrant ratios. Once weights have been 
applied, the peak disappeared.
Depending on the image, or even on each particular spot, different ratio estimators, such as 
the ratio of means or ratio of medians, may ensure a better performance; however, in 
practice it is difficult to predict with confidence the best estimator. RFSE approach gives a 
unique ratio estimate, which is always comparable to the best of other ratio estimators.  

5.3 Robust processing of experimental images 

Localization. We tested spot localization algorithm for arrays with different spot sizes, 
experimental designs and levels of contamination (numerous examples can be found on our 
web site http://bioinfo.curie.fr/projects/maia/). In all cases the spot localization procedure 
was carried out automatically with no user intervention. We only supplied the number of 
blocks in rows and columns and the number of spots in rows and columns within each 
block when switching from one image to another one. Comparison of the performance of 
our spot localization algorithm with others can be found in (Novikov & Barillot, 2006a). 
Although the developed procedure has proved to be very robust with respect to different 
types of microarray distortions, there is no guarantee that it will perform well for any array. 
Therefore, interactive tools are available to repair erroneous grids.  
Quantification and Quality. We quantified two experimental images (Fig. 10) of different 
array design and signal-to-noise levels. One image (Fig. 10A) was provided as 
demonstration example for UCSF Spot 2.0 (downloadable from 
http://jainlab.ucsf.edu/Downloads.html). It contains 4x4 blocks with 21x21 spots per block, 
with a spot cell size of about 10 pixels. Cy3 and Cy5 color channels are strongly correlated, 
with the average correlation coefficient for the spots being about 0.97. Bright contamination 
spots can be seen irregularly scattered over the array. The magnified image of one such spot 
is shown in Fig. 5. Each clone was spotted in triplicate. The replicated spots are placed as 
neighbors in a row. The second image (measured in the Institute Curie, downloadable from 
http://bioinfo.curie.fr/projects/maia/) contains 12x4 blocks with 15x15 spots per block 
(Fig. 10B), with a spot cell size of about 30 pixels. The average correlation between the 
channels in the spots was about 0.85, being somewhat lower than for the first image, 
although there are no obvious contamination spots. Each clone was prepared in triplicate 
with the replicated spots put in three vertically distributed sub-arrays.  
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It is difficult to remain objective while doing comparative study for the experimental 
images. As the true ratio values are unknown, the only useful measure of quality is the 
variation in ratio estimates between the replicated spots, which should be reasonably low. 
Therefore we take the coefficient of variation (Eq. (14)) of the replicates as a quantitative 
measure of the ratio estimation consistency. However, this measure may not be totally 
objective: (i) the estimates may be consistent, but systematically biased (the true values of 
the ratios are unknown); (ii) three replicated spots of very poor quality may give very 
similar ratio values just by chance (the number of replicates is low). The average over all 
replicates at the given array coefficient of variation is taken as a global indicator of the 
Cy5/Cy3 ratio consistency of the array.  

Fig. 10. Experimental images used for evaluation: A) 4x4 blocks with 21x21 spots per block, 
spot cell size is about 10 pixels; B) 12x4 blocks with 15x15 spots per block, spot cell size is 
about 30 pixels. The locations of triplicates are indicated. 

We compared the averaged coefficient of variation for three ratio estimates (RFSE, ratio of 
means and ratio of medians) with or without quality control. The weights, wi, of the 
marginal quality parameters for Qk were identified using Eq. (12) with V ≈ 0.07 for image A, 
and with V ≈ 0.2 for image B. 
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The results are summarized in Table 1. RFSE algorithm ensures the smallest coefficient of 
variation for both images and quality control improves performance for all three ratio 
estimates. We found a greater improvement for image A than for image B. This was not a 
surprise, as image B is characterized by a reasonably high signal-to-noise level, and it does 
not contain any obvious contaminated spots. However, even in this case the quality 
measures cannot be ignored, as there are still a few low-intensity spots that need to be 
specially treated (probably rejected). By contrast, image A has obvious randomly distributed 
pieces of dust, and the developed filtering procedure (RFSE) and quality measures proved 
to be powerful enough to repair or to disregard the contaminated spots, thus increasing the 
consistency of the Cy5/Cy3 ratio estimates. The fact that quality control does not show up 
much better performance is due to rather good general quality of the images, and a few 
problematic triplicates cannot influence very much the averaged coefficients of variation. 
For example, in image A, we have less than 9% of triplicates with the ratio variation 
coefficients larger that the selected V (~0.08), and 7% for image B (V ≈ 0.2). 

Image Quality 
weights RFSE Ratio of 

means 
Ratio of 
medians 

Without 0.0196 0.0324 0.0410 
 A  

With 0.0172 0.0245 0.0381 

Without 0.119 0.120 0.133 
B

With 0.108 0.109 0.122 

Table 1. The averaged coefficient of variation of the ratio triplicates for two images A and B 
(see Fig. 10). 

Results on comparison of the performance of our quantification approaches with the 
approaches available from other image analysis packages can be found in (Novikov & 
Barillot, 2005a; Novikov & Barillot, 2005b). 

6. Software 

The developed algorithms have been implemented in the MAIA (microarray image analysis) 
software package (Novikov & Barillot, 2006b). Demonstration version of the software can be 
downloaded from http://bioinfo.curie.fr/projects/maia/. A full version is freely available 
to non-commercial users upon request from the authors. The package is written in Java 
(interface) and C++ (algorithms), and. runs on Windows 95/98/Me/NT/2000/XP platforms 
(may be used under Unix after recompiling C++ code) and needs the Java Runtime 
Environment. The whole quantification procedure (including filtering, segmentation and 
ratio estimation) for one 4Mb image pair (Cy3/Cy5, ~7300 spots; each spot cell is ~10 pixels) 
takes ~3 sec on 3.00GHz Pentium® 4 CPU with 1 GB of RAM; for a 40Mb image pair 
(~10800 spots; each spot cell is ~30 pixels) takes up to 20 seconds of processing.  
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7. Conclusions 

In this work we have presented a complete solution for robust, high-throughput, two-color 
microarray image processing comprising procedures for automatic spot localization, spot 
quantification and spot quality control.  
The spot localization algorithm is fully automatic and robust with respect to deviations from 
perfect spot alignment and contamination. As an input, it requires only the common array 
design parameters: number of blocks and number of spots in the x and y directions of the 
array. Although fully automatic, there is no guarantee that it will perform well for any 
array. Therefore, we offer some interactive tools to repair grid in case if it is erroneous. 
Robust ratio estimation comprises two steps. First, linear regression filtering is used to 
identify and remove aberrant pixels, and then more traditional segmentation approaches are 
applied for final estimation. Using the two-step quantification algorithm, we ensure a 
unique ratio estimate, which is as robust as estimates based on medians and as precise as 
estimates based on means. Linear regression filtering relies on the fact that the two color 
channels are expected to be highly correlated. Any contamination, which is uncorrelated in 
the two channels, can be easily recognized by the algorithm and removed. For noisy (weakly 
correlated) data, the filter is transparent for the data. Moreover, in this case, linear 
regression estimates can be biased. Therefore we apply a spot segmentation step to establish 
the final estimate.  
The spot quality algorithm provides a value of spot quality reflecting the level of confidence 
in the obtained ratio estimate at each spot. The unique spot quality value is derived from a 
set of ten marginal quality parameters characterizing certain features of the spot. The 
contribution of each quality parameter in the overall quality is automatically evaluated 
based on the visual classification of the spots, or using information available from the 
replicated spots, located on the same array or over a set of replicated arrays. Therefore the 
developed procedure allows us not only to quantify spot quality, but also to identify 
different types of spot deficiency occurring in microarray technology. The quality values can 
be used either directly to flag out some spots with the quality lower than the user-defined 
threshold, or in the follow-up analysis as a weight controlling the contribution/influence of 
the obtained ratio estimates. 
There are many possibilities to advance the developed algorithms. For example, several spot 
localization parameters (γ, α and β), that are currently fixed in predefined values, can be 
iteratively adjusted to achieve the highest regularity of the generated grid. To enhance spot 
quantification, we can envisage more sensitive (than the single-case diagnostics for the 
linear regression model) algorithms for aberrant pixel detection. These perspectives are 
facilitated by further standardizing microarray technology, so that images are becoming 
more regular, and more specific models for spots and arrays can be developed and justified. 
As it was shown, different features of the spot (intensity, size, circularity, etc.) can be 
quantitatively characterized. These characteristics, besides ratios, may contain useful 
information for the follow-up analysis. One possibility to utilize this information is 
presented in this paper: we used them to derive spot quality values. However, we believe 
that more sophisticated analytical tools can be applied to use spot information in other 
applications. Exploration of these possibilities creates an interesting perspective for future 
developments.  



Robust Microarray Image Processing 219

8. Acknowledgements 

We would like to thank our colleagues from the different laboratories of the Institute Curie: 
(F. Radvanyi, CNRS/IC 144; O. Delattre, INSERM/IC 830; M. Dutreix, CNRS/IC 2027) and 
Prof. D. Pinkel (UCSF Comprehensive Cancer Center), who have provided numerous 
microarray images allowing considerable improvement of the algorithms. 

9. References

Angulo, J. & Serra, J. (2003). Automatic analysis of DNA microarray images using 
mathematical morphology. Bioinformatics, Vol. 19, 553-562. 

Atkinson, A. & Riani, M. (2000). Robust Diagnostic Regression Analysis, Springer. 
Axon Instruments, Inc. (2005). GenePix Pro 6.0. http://www.axon.com, User’s Guide and 

Tutorial.
Bengtsson, A. & Bengtsson, H. (2006). Microarray image analysis: background estimation 

using quantile and morphological filters. BMC Bioinformatics, Vol. 7, 96. 
Bozinov, D. & Rahnenführer, J. (2002). Unsupervised technique for robust target separation 

and analysis of DNA microarray spots through adaptive pixel clustering, 
Bioinformatics, Vol. 18, 747-756. 

Brändle, N.; Bischof, H. & Lapp, H. (2003). Robust DNA microarray image analysis. Machine 
Vision and Applications, Vol. 15, 11-28. 

Brown, C.S.; Goodwin, P.C. & Sorger, P.K. (2001). Image metrics in the statistical analysis of 
DNA microarray data. Proceedings of the National Academy of Sciences, Vol. 98, 8944-
8949.

Buhler, J.; Ideker, T. & Haynor, D. (2000). Dapple: improved techniques for finding spots on 
DNA microarrays. UW CSE Technical Report UWTP 2000-08-05.

Bylesjö, M.; Eriksson, D.;  Sjödin, A.;  Sjöström, M.; Jansson, S.; Antti, H. & Trygg, J. (2005). 
MASQOT: a method for cDNA microarray spot quality control. BMC Bioinformatics,
Vol. 6, 250. 

Ceccarelli, M. & Antoniol, G. (2006). A deformable grid-matching approach for microarray 
images. IEEE Transactions on Image Processing, Vol. 15, 3178-3188. 

Chen, Y.; Kamat, V.; Dougherty, E.R.; Bittner, M.L.; Mel*tzer, P.S. & Trent, J.M. (2002). Ratio 
statistics of gene expression levels and applications to microarray data analysis. 
Bioinformatics, Vol. 18, 1207-1215. 

Dissanaike, G. & Wang, S. (2003). A critical examination of orthogonal regression. 
http://ssrn.com/abstract=407560.

Eckel-Passow, J.E.; Hoering, A.; Therneau, T.M. & Ghobrial I. (2005). Experimental design 
and analysis of antibody microarrays: applying methods from cDNA arrays. Cancer 
Research, Vol. 65, 2985-2989. 

Fisher, L.D. & van Belle, G. (1993). Biostatistics. A Methodology for the Heath Sciences. John 
Willey & Sons. 

Glasbey, C.A. & Ghazal, P. (2003). Combinatorial image analysis of DNA microarray 
features, Bioinformatics, Vol. 19, 194-203. 

Hautaniemi, S.; Edgren, H.; Vesanen, P.; Wolf, M.; Järvinen, A.K.; Yli-Harja, O.; Astola, J.; 
Kallioniemi, O. & Monni, O. (2003). A novel strategy for microarray quality control 
using Bayesian networks. Bioinformatics, Vol. 19, 2031-2038. 



Vision Systems - Segmentation and Pattern Recognition 220

Hegde, P.; Qi, R.; Abernathy, K.; Gay, C.; Dharap, S.; Gaspard, R.; Hughes, J.E.; Snesrud, E.; 
Lee, N. & Quackenbush, J. (2000) A concise guide to cDNA microarray analysis. 
BioTechniques, Vol. 29, 548-562. 

Herzel, H.; Beule, D.; Kielbasa, S.; Korbel, J.; Sers, C.; Malik, A.; Eickhoff, H.; Lehrach, H. & 
Schuchhardt, J. (2001) Extracting information from cDNA arrays. Chaos, Vol. 11, 98-
107.

Ishkanian, A.S.; Malloff, C.A.; Watson, S.K.; DeLeeuw, R.J.; Chi, B.; Coe, B.P.; Snijders, A.; 
Albertson, D.G.; Pinkel, D.; Marra, M.A.; Ling, V.; MacAulay, C. & Lam, W.L. 
(2004). A tiling resolution DNA microarray with complete coverage of the human 
genome. Nature Genetics, Vol. 36, 299–303. 

Jain, A.N.; Tokuyasu, T.A.; Snijders, A.M.; Segraves, R.; Albertson, D.G. & Pinkel, D. (2002). 
Fully automated quantification of microarray image data. Genome Research, Vol. 12, 
325-332.

Kendall, M.G. & Stuart, A. (2003). The Advanced Theory of Statistics, Vol. 2, McMillan, 1979. 
Lehmussola, A.; Ruusuvuori, P. & Yli-Harja, O. (2006). Evaluating the performance of 

microarray segmentation algorithms. Bioinformatics, Vol. 22, 2910-2917.  
Novikov, E. & Barillot, E. (2005a). An algorithm for automatic evaluation of the spot quality 

in two-color DNA microarray experiments. BMC Bioinformatics, Vol. 6, 293. 
Novikov, E. & Barillot, E. (2005b) A robust algorithm for ratio estimation in two-color 

microarray experiments. Journal of Bioinformatics and Computational Biology, Vol. 3, 
1411-1428.

Novikov, E. & Barillot, E. (2006a). A noise-resistant algorithm for grid finding in microarray 
image analysis. Machine Vision and Applications, Vol. 17,  337-345. 

Novikov, E. & Barillot, E. (2006b). Software package for automatic microarray image 
analysis (MAIA). Bioinformatics, Vol. 23, 639-640. 

Pinkel, D.; Segraves, R.; Sudar, D.; Clark, S.; Poole, I.; Kowbel, D.; Collins, C.; Kuo, W.L.; 
Chen, C.; Zhai, Y.; Dairkee, S.H.; Ljung, B.M.; Gray, J.W. & Albertson, D.G. (1998) 
High resolution analysis of DNA copy number variation using comparative 
genomic hybridization to microarrays. Nature Genetics, Vol. 20, 207–211. 

Ritchie, M.E.; Diyagama, D.; Neilson, J.; van Laar, R.; Dobrovic, A.; Holloway, A. & Smyth, 
G.K. (2006). Empirical array quality weights in the analysis of microarray data. 
BMC Bioinformatics, Vol 7, 261. 

Rousseeuw, P.J. & Leroy, A.M. (2003). Robust Regression and Outlier Detection, John Willey & 
Sons.

Rueda, L. & Vidyadharan, V. (2006). A hill-climbing approach for automatic gridding of 
cDNA microarray images. IEEE/ACM Transactions on Computational Biology and 
Bioinformatics, Vol. 3, 72-83. 

Wang, X.; Ghosh, S. & Guo, S.W. (2001). Quantitative quality control in microarray image 
processing and data acquisition. Nucleic Acids Research, Vol. 29, e75. 

Yang, Y.H.; Buckley, M.J.; Dudoit, S. & Speed, T.P. (2002). Comparison of methods for image 
analysis on cDNA microarray data. Journal of Computational and Graphical Statistics,
Vol. 11, 108-136. 



12

Computer Vision for Microscopy Applications 

Nikita Orlov, Josiah Johnston, Tomasz Macura, Lior Shamir, Ilya Goldberg 
Laboratory of Genetics, National Institute on Aging/NIH 

USA

1. Introduction 

The tremendous growth in digital imagery has introduced the need for accurate image 
analysis and classification. The applications include content based image retrieval in the 
World Wide Web and digital libraries (Dong & Yang, 2002; Heidmann, 2005; Smeulders et 
al., 2000; Veltkamp et al., 2001) scene classification (Huang et al., 2005; Jiebo et al., 2005), face 
recognition (Jing & Zhang, 2006; Pentland & Choudhury, 2000; Shen & Bai, 2006) and 
biological and medical image classification (Awate et al., 2006; Boland & Murphy, 2001; 
Cocosco et al., 2004; Ranzato et al., 2007). Although attracting considerable attention in the 
past few years, image classification is still considered a challenging problem in machine 
learning due to the complexity of real-life images.  This chapter discusses an approach to 
computer vision using automated image classification and similarity measurement based on 
a large set of general image descriptors.  Classification results as well as image similarity 
measurements are presented for several diverse applications. 

1.1. Image classification and computer vision 

Image analysis can be partitioned into two major approaches.  In one, it is assumed that the 
image is of something that can be modeled a-priori and recognized within the image.  This 
approach uses a model of the subject to drive segmentation followed by extraction of 
features from the segmented data that correspond to model parameters (size, shape, 
intensity, distribution, etc).  This approach lends itself very well to using imaging for 
quantitatively measuring defined aspects of a pre-conceived model (Dong & Yang, 2002; 
Huang et al., 2005; Smeulders et al., 2000).  However, a model is not always available, or 
when available is not always easily reconciled with image data or is not readily useable to 
extract the relevant subject out of the image (i.e. segmentation).  In many applications of 
image processing, the observed parameters of a model are used to answer questions about 
the degree to which a particular observation differs from previous observations (i.e. image 
similarity), or the degree to which an observation agrees with several alternative models (i.e. 
image classification).  Thus an alternative to model-based image analysis for the purposes of 
computing image similarity or classification is to use pattern recognition and supervised 
machine learning to answer these questions directly. The focus of this chapter is an 
approach where a model of what is imaged is built up out of examples consisting of training 
images rather than an image-independent pre-conceived notion of what is being imaged. 
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Although the image plane is the carrier of various patterns, the pixels themselves are not 
normally used directly as inputs to machine learning algorithms.  Instead, image content is 
derived through computation of numerical values that represent quantitative measures of 
various pixel patterns (Gurevich & Koryabkina, 2006; Heidmann, 2005). These numerical 
features of the image are based on different algorithms that extract a wide variety of 
patterns present in the image, such as edges, color (Funt & Finlayson, 1995; Stricker & 
Orengo, 1995; Tieu & Viola, 2004), textures (Ferro & Warner, 2002; Livens et al., 1996; Smith 
& Chang, 1994; Smith & Chang, 1996), shapes (Mohanty et al., 2005), histograms (Chapelle et 
al., 1999; Flickner et al., 1995; Qiu et al., 2004), etc. 
Biological microscopy is an emerging application for pattern recognition that presents many 
diverse problems and image modalitites (Awate et al., 2006; Boland et al., 1998; Boland & 
Murphy, 2001; Duller et al., 1999; Murphy, 2004; Orlov et al., 2006; Ranzato et al., 2007; 
Rodenacker & Bengtsson, 2003; Swedlow et al., 2003).  When pattern recognition has been 
used, the tendency is to tailor the image descriptors as well as the classification algorithm to 
a specific type of imaging problem.  Biological microscopy can produce images of many 
kinds ranging from structural studies of sub-cellular compartments, to the morphology of 
cells, to tissues and entire organisms.  Methods for generating contrast (i.e. the imaging 
techniques) vary as much as the scale – from fluorescently-tagged protein-specific probes, to 
various colorimetric stains, to the differential scattering properties of molecular structures.  
For these reasons, there is no typical imaging problem in biological microscopy and 
therefore no typical set of image content descriptors. The very nature of the application field 
requires using a broad variety of algorithms for describing relevant image content (Awate et 
al., 2006; Boland et al., 1998; Boland & Murphy, 2001; Cocosco et al., 2004; Livens et al., 1996; 
Ranzato et al., 2007). 
A growing demand in pharmaceutical as well as basic research is the use of high-
throughput image analysis to score High Content Screens (HCS).  In these experiments, a 
large bank of manipulations (tens of thousands of genes or chemical compounds) is applied 
one by one to cells grown under defined conditions.  Generally the screen is a hunt for genes 
or compounds that mimic a particular cellular response that can be pre-arranged using 
positive controls.  These screens are typically highly automated using robots for plate and 
liquid handling, as well as image acquisition.  The variety of possible visual assays, 
combined with the very high demands on the robustness of the processing algorithms 
makes image analysis in these types of screens the primary bottleneck. 
Rodenacker and Bengtsson (Rodenacker & Bengtsson, 2003) have surveyed a large collection 
of content descriptors for the analysis of grayscale microscopy images.  They differentiated 
feature types into four major categories: intensity, size and shape, texture, and structure. 
Their suggested scheme for computing signatures includes two pre-processing steps, 
segmentation (selection of ROIs) and transforms.  The use of image transforms is seen as an 
essential part of feature extraction, where the next-order extraction algorithms (histograms 
and others) would operate on transforms to produce feature vectors. Many of the feature 
algorithms given by Rodenacker and Bengtsson could also be used without prior 
segmentation, and are applicable outside of biological microscopy. The number of 
descriptors discussed in the paper is quite large, so the authors provide suggestions about 
which features they found most useful and recommend avoiding textural and structural 
features for data with strong variation in size and intensity. For feature selection, they 
recommend hand picking features instead of using independent statistical methods.  
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Manual feature selection relies on considerable expertise, because of its dependence on the 
specifics of the experiment as well as the preprocessing steps used. 
Lehmann et al. (Lehmann et al., 2005) have developed an automated system for 
categorization and retrieval of images in a medical context. The system includes feature 
computation and selection as well as classification based on supervised learning using a k-
NN algorithm.  The set of descriptors they used was limited to Tamura textures as well as 
several other texture-based descriptors applicable in this domain.  The sensitivity of the 
system was quite good, being able to distinguish 81 distinct categories. 
Gurevich and Koryabkina (Gurevich & Koryabkina, 2006) undertook probably the most 
ambitious survey of existing image descriptors.  They developed and adopted from the 
literature a broad range of features and classified them by scope, method, purpose, etc. 
While the authors made suggestions of applicability of descriptor types to specific domains, 
no automated mechanism of feature selection was proposed. 

1.2. Digital images: properties and meaning 

A given image is not merely an undifferentiated ‘bag of features’.  The meaning of the 
image, or the relevant information it contains, can be derived from these features only once 
their relative importance is determined in a specific context.  In supervised machine 
learning, context is determined by associating a given image with others in a class.  The set 
of classes and the example images they are comprised of defines the context of a specific 
imaging problem.  A given image may be viewed in different contexts by associating it with 
different groups, which results in a different relative importance of the features, and 
consequently different interpretations of the image’s meaning. 
Typical approaches to machine learning emphasize optimizing classification in just one 
particular problem.  Because of this, typical implementations of pattern recognition 
algorithms only allow for a limited set of descriptors (Awate et al., 2006; Boland & Murphy, 
2001; Cocosco et al., 2004; Dong & Yang, 2002; Jing & Zhang, 2006; Ranzato et al., 2007; 
Rosenfeld, 2001; Shen & Bai, 2006; Smeulders et al., 2000).  A limited number of features is 
desirable because it lowers the computational cost, and reduces the dimensionality of the 
feature space used in classification.  The features selected and their relative weights are 
problem-specific.  The feature set can become inapplicable when new images deviate 
significantly from those the classifier was trained on, or if they are from a different imaging 
modality. 
A general computer-vision approach requires an alternative to task-specific or manual 
feature selection (Rosenfeld, 2001).  It should use a large feature set in an application-specific 
context to automatically pick patterns crucial for the given recognition problem (Fig. 
1)(Felsenstein, 1989). 



Vision Systems - Segmentation and Pattern Recognition 224

Fig.  1. Image classification scheme. Panel 1: feature extraction; panel 2: feature selection and 
pattern recognition. 

Two antagonistic principles play important roles: context-independent and context-
dependent.  On the one hand, the system must not ignore details capable of discriminating 
patterns, which requires having a comprehensive set of context-independent descriptors.  
On the other hand, irrelevant information (weak features) should be discarded depending 
on the image context.  A general approach to computer vision must balance these two 
principles.  Automating the selection and weighing of features prevents the introduction of 
anthropogenic bias, which combined with a comprehensive set of descriptors, leads to both 
generality and objectivity. 
Three alternative pathways are available for introducing discriminative context into the 
initial feature set.  The first is to evaluate the discriminative power for all features of the 
initial set independently of a classifier, keeping features with the highest classification 
power and discarding the rest.  Examples of classifier-independent feature reduction 
include principal component analysis (PCA) and linear discriminant analysis (LDA, e.g. 
Fisher discriminant).  The second approach is to combine feature selection with classifier 
building and training, resulting in a feature subset concurrently with the classifier itself.  
Lastly, there are classifiers capable of performing in high dimensionality feature spaces, 
essentially by being tolerant of many features with low weights.  These include weighted 
nearest neighbor methods (Parades & Vidal, 2006; Ricci & Acesani, 1999),  though these have 
not been evaluated in feature spaces higher than a few hundred dimensions. 
The variety of images available from biological microscopy sets it apart from typical pattern 
classification problems.  This motivated taking a broader look at the principles of image 
descriptors to measure a wider variety of image content.  Because of the generality afforded 
by addressing the field of biological microscopy as a whole, this approach also proved 
effective in completely unrelated fields. 

1.3. Chapter outline 

This chapter describes an approach to compile and recombine traditional and new image 
analysis algorithms into a general-purpose hyper-dimensional feature set, and the use of an 
automated feature selection and training method to reduce this feature bank to a context-
dependent subset. This effort resulted in a multi-purpose image classifier that can be 
applied to a variety of image classification problems. 
Section 2 introduces the algorithms used in the feature extraction scheme, and Section 3 
describes feature reduction and classifier training. Section 4 presents classification results on 
a set of diverse image types, and Section 5 discusses techniques for computing context-
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specific image similarity. Section 6 presents a computing framework used to calculate the 
features described in Section 2. 

2. Extraction of Image Features 

Features fall into four categories: polynomial decompositions, textures, object descriptors 
and pixel statistics.  In the first category, a polynomial approximation of the image is 
computed, and the polynomial coefficients serve as image features. Three kinds of 
polynomials are computed: Zernike, Chebyshev and Chebyshev-Fourier.  Texture features 
report inter-pixel variation in intensity for several directions and resolutions.  These include 
Haralick textures, as well as Tamura features and Gabor filters.  Object features are 
calculated from one or more object identification algorithms and comprise statistics about 
object number, spatial distribution, size, shape, etc.  Pixel statistics consist of multi-scale 
intensity histograms, edge statistics, radon histograms and comb-4 moments.  In addition to 
calculating these features on the original image pixels, they are also calculated on several 
image transforms (Fourier, wavelet, Chebyshev), as well as transform combinations (see Fig. 
2).

Fig. 2. Proposed scheme for feature extraction. Features are extracted from the original 
image and several transforms.  The Radon Transform Statistics are not computed from the 
wavelet transform. 
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Figure 2 illustrates a feature bank (image descriptors) composed of 1025 variables from 11 
algorithms, three transforms, and two transform combinations.  Each feature measures a 
different aspect of image content though they cannot be considered strictly orthogonal or 
independent of each other.  All features are based on grayscale images, so that color 
information is not currently used.  Also, though these features cover a broad spectrum of 
image content, this set cannot be considered to be complete. 

2.1. Transforms 

In general, transforms allow feature extraction algorithms to be reused to measure very 
different image content than using them on the original pixels.  This algorithm reuse leads to 
a large expansion of the feature space with a corresponding increase in the variety of image 
content that can be measured. Each of the three transforms results in a 2D matrix of the 
same size as the original image pixels; features are computed on image transforms in the 
same manner as they are on the original images. The Fourier transform is a standard 
implementation (FFTW), where only the absolute value of the complex transform is used. 
For the wavelet transform, the standard MATLAB Wavelet toolbox functions ‘wavedec2.m’ 
and ‘detcoef2.m’ were used to compute coefficients for a two-dimensional wavelet 
decomposition of the image.  The Chebyshev transform was implemented by our group and 
is described in section 2.3 below. 

2.2. Pre-processing and color images. 

Image pre-processing is a common way to limit noise and improve classification (Hoggar, 
2006).  Pre-processing is quite common as a prelude for model-based segmentation, but is 
often unnecessary for the type of scene-based pattern recognition presented in this chapter.  
All but one of the examples presented in Section 5 were classified without preprocessing.  In 
the example of age-related degeneration of the body-wall muscle, the muscle fibers of the 
worm’s body wall contain significant contributions from the worm’s internal structures 
which were irrelevant for this study.  Because the fibers make a regular repeating pattern, a 
Hamming filter (Hamming, 1989) was utilized to dampen contributions from these less 
regular structures (see Figure 3). 

Fig.  3. Image pre-processing. 1: original image (contains irrelevant internal structures); 2: 
filtered image allows concentrating on morphology of body wall muscle. 

Color images also require preprocessing because the feature bank operates on grayscale 
images. Color information is commonly expressed as several separate color planes in RGB 
or some other color space.  In some cases, the color information is superfluous for 
classification purposes, and the planes can be combined into a single gray-scale image using 
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the color’s luminance from the NTSC video conversion formula (rgb2gray in MATLAB).  In 
pathology, tissue biopsies are often stained with a pair of dyes called Hematoxylin and 
Eosin (H&E stain), producing purple cell nuclei with other structures in varying shades of 
pink. These are normally imaged with an RGB camera, which convolves the H&E channels 
into an RGB space which is dependent on the camera’s spectral response. There are three 
ways to overcome these difficulties.  First, one can compute features on R, G and B channels 
separately using the existing scheme, with the drawback of treating the 3 channels as 
independent entities even though each channel is a convolution of H&E.  Second, one can 
use a color deconvolution algorithm (Ruifrok & Johnston, 2001) or similar techniques to 
approximate the original 2D color space and then use the feature bank on the resulting H&E 
channels.  Lastly, one can introduce feature extraction algorithms that specifically measure 
color information (e.g. color histograms). 

2.3. Chebyshev transform and related features 

Chebyshev polynomials  (Gradshtein & Ryzhik, 1994) 

Tn (x) = cos n arccos(x)( ) (1) 

are widely used for approximation purposes. For any given smooth function one can 
generate its Chebyshev approximant, like 

f (x) ≅ αnTn (x)

n= 0

N
.  (2) 

Chebyshev polynomials are orthogonal (with a weight (Gradshtein & Ryzhik, 1994)); 
therefore, the expansion coefficients αn  can be expressed via the scalar product: 

αn = f (x), Tn (x) . (3) 

By analogy with Fourier space (formed by the transform coefficients), one can consider the 
collection of coefficients αn{ } as members of some spectral space – the Chebyshev 
space. Similarly to the 1D case (2), for a given image I ij  its two-dimensional approximation 
through the Chebyshev polynomials is 

I ij = I (xi ,y j ) ≅ αnm Tn (xi ) Tm (y j )

n,m= 0

N
.  (4) 

The fast algorithm was used in the transform computation; it takes two sequential 1D 
transforms, first for rows of the image, then for columns of the resulting matrix (similarly to 
the implementation of 2D FFT). 
The Chebyshev transform is designed to characterize all ranges of the image spectral 
domain – from low to high frequency features.  The idea is to retain a finite number of 
expansion terms, with the expansion coefficients being used as image descriptors. 
Chebyshev is used both as a transform (with orders matching image dimensions) and as a 
set of statistics. The maximum transform order does not exceed N = 20, so that the resulting 
coefficient vector has dimensions (1x400).  The feature vector is produced from the 
coefficients by applying a 32-bin histogram. 
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2.4. Features based on Chebyshev-Fourier transform 

This 2D transform is defined in polar coordinates, and it uses two different kinds of 
orthogonal transforms for its two variables: the radial coordinate of the image is 
approximated with Chebyshev polynomials, and Fourier harmonics are used for the 
azimuth variable: 

Ωnm r,φ( )= Tn 2r /R −1( )× exp imφ( ), 0 ≤ r ≤ R . (5) 

In this sense it shares similarities with Zernike transform where the power polynomials are 
used in radial direction, and harmonic functions for the angle. For the given image ( I ij ) the 
transform generates an image approximant in the form 

I ij I rk ,φl( )≅ βnm Ωnm rk ,φl( )
n= 0

N

m=−N / 2

N / 2

. (6) 

In the presented descriptor system (Fig. 2), features based on coefficients βnm  of the 
Chebyshev-Fourier transform capture low-frequency components of the image content 
(large-scale areas with smooth intensity transitions).  The highest order of polynomial used 
is N = 23, and the coefficient vector is then reduced by binning to 1x32 length. 

2.5. Features based on Gabor wavelets 

Gabor wavelets (Gabor, 1946) are used to construct spectral filters for segmentation or 
detection of certain image texture and periodicity characteristics. Gabor filters are based on 
Gabor wavelets, and the Gabor transform of an image I (x,y)  is defined as 

GT (x,y; f ) = I (x − wX ,y − wY ) G(wX ,wY ; f ) dwX dwY
WX ,WY

 (7) 

where the kernel G(wX ,wY ; f )  often takes the form (Gregorescu et al., 2002) of a 
convolution of the Gaussian with the harmonic function: 

G(wX ,wY ; f0 ) = exp{−(X 2 +γY 2
) /2σ 2

} × exp{ j( f0X +φ)},

X = wX cosθ + wY sinθ
Y = −wX sinθ + wY cosθ
 
 
 

 (8) 

The parameters of the transform are rotation (θ ), ellipticity ( γ ), frequency ( fX , being 
related to the wavelength) and σ  (related to the bandwidth). The parameters γ  and σ  were 
chosen to be γ = 0.5,σ = 0.56× 2π / fX (Gregorescu et al., 2002).  In the feature bank (see Fig. 2) 
the Gabor Features (GF) are defined as an area occupied by the Gabor-transformed (GT) 
image:

GF( fX ) = 1

GL
GT (x,y; fX ) dx dy

x,y:GT >0

≈ 1

GL
GTij ( fX )

i, j:GT >0

, GTij ( fX ) = GT (x j ,yi; fX ) . (9) 
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To minimize frequency bias, these features are computed in a frequency range 

( fX ∈ f k{ }k=1

K ), and normalized with the low frequency component GL = GF( fL ) .  The 
frequency values used were fL = 0.1 and fX = 1 2 ... 7[ ] .
In the feature bank in Figure 2, the Gabor features belong to a group of textural descriptors 
and measure image content corresponding to the high and highest spectral frequencies, 
especially grid-like image textures. 

2.6. Radon transform based features 

The Radon transform computes a projection of pixel intensity onto a radial line from the 
image center at a specified angle (radon.m is a built in MATLAB function). The transform is 
typically used for extracting spatial information where pixels are correlated to a specific 
direction or angle. The Radon feature computes a series of Radon transforms for angles 0, 
45, 90, and 135, and then convolves each transform into a 3-bin histogram; the resulting 
vector therefore totals 12 entries.  

2.7. Multi-scale histograms 

This set of features computes histograms with varying numbers of bins (3, 5, 7, and 9) 
(Hadjidementriou et al., 2001). Each frequency range best corresponds to a different 
histogram, and thus variable binning allows measuring content in a large frequency range.  
The maximum number of counts is used to normalize the resulting feature vector, which is 
1x24 elements. 

2.8. Four-way oriented filters for first four moments 

For this set of features, the image is subdivided into a set of stripes in four different 
orientations (0°, 90°, +45° and -45°).  The first four moments (mean, variance, skewness, and 
kurtosis) are computed for each “stripe”, and each set of stripes is sampled as a 3-bin 
histogram.  Four moments in four directions with 3-bin histograms results in a 48-element 
feature vector. 

2.9. Tamura features 

Three basic textural properties of an image – contrast, coarseness, and directionality– were 
proposed by Tamura in 1978 (Tamura et al.). We used these definitions as they were given 
in Tamura’s paper and coded them without modifications.  Coarseness gave 4 values (1 for 
total coarseness and 3 for the histogram), directionality and contrast each contributed 1 
entry, totaling 6 features for this group. 

2.10. Edge, Zernike and Haralick features 

These features were computed as described in (Murphy et al., 2001).  Briefly, Edge features 
measure several statistics on the image’s Prewitt gradient.  Zernike features are the 
coefficients of the Zernike polynomial approximation of the image.  Haralick features are 
statistics computed on the image’s co-occurrence matrix. 
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2.11. Object Statistics 

Object statistics are calculated from a binary mask of the image resulting from applying a 
global threshold using Otsu's method. Thirty-four basic statistics about the segmented 
objects are extracted with MATLAB’s ‘regionprops.m’ function. The statistics include: 
number of objects, “Euler Number” (the number of objects in the region minus the number 
of holes in those objects), and image centroid (x and y). Additionally, minimum, maximum, 
mean, median, variance, and a 10-bin histogram are calculated on both the objects’ areas and 
distances from objects’ centroids to the image centroid. 

3. Feature Evaluation and Training

Feature extraction is followed by evaluation of each feature’s classification power in a given 
training context. Many classification algorithms such as neural networks, Bayesian belief 
networks, Markov chain networks, support vector machines, etc, operate in low-
dimensional space and neither need nor can function with extraneous or irrelevant features 
(Bishop, 1996).  The problem of mismatch between number of features used for image 
description and the number useable by these classifiers is often referred to as the ‘curse of 
dimensionality’ (Bishop, 1996).  Common techniques for reducing dimensionality include 
Fisher Discriminant and Linear Discriminant Analysis, as well as Principal Component 
Analysis, Independent Component Analysis, etc. (Bishop, 1996; Fukunada, 1990; Jain & 
Zongker, 1997; Kudo & Sklansky, 2000; Yang & Wu, 2004; Yu & Yang, 2001).  
Dimensionality reduction is still considered an active research topic.   
Having a large collection of features implies that for every particular classification problem 
a majority of the features will be sensitive to irrelevant image content and therefore 
represent noise.  Such features unnecessary add to computational complexity and degrade 
the performance of the classifier when a finite number of training samples are used (Kudo & 
Sklansky, 2000).  Including non-representative features in a classification problem can also 
lead to over-training with a resulting loss of predictive power. 
Dimensionality reduction is a form of hard thresholding, where features below a certain 
classification power are completely eliminated from subsequent training and classification.  
An alternative approach (soft thresholding) can be realized with a family of weighting 
algorithms (Parades & Vidal, 2006; Ricci & Acesani, 1999).  The examples presented in 
Section 4 use a hard thresholding approach which is discussed below. 
One way to evaluate the expected usefulness (i.e. discriminative power) of each feature is by 
computing its ability to separate data between classes while minimizing its within-class 
variation.  This scoring is based on the Fisher linear discriminant which can be formulated 
as follows (Fukunada, 1990)

F = SB SW , SB = mean
c=1..C

μ − μc( )2
, SW = mean

c=1..C
σ c

2  (10) 

where SB is the variance of class means from the pooled mean, SW is the mean of within-class 
variances, μc  is the mean of class c, μ  is the pooled mean (i.e. mean of all samples), and σ c

2

is the variance of class c.  
The first round of dimensionality reduction calculates the Fisher score separately for each 
feature, and eliminates 80% of the features with the lowest scores. The second round of 
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dimensionality reduction tests each feature’s discriminative power in a classifier context and 
iteratively builds the classifier using a greedy-hill climbing algorithm.  Naïve Bayesian 
networks were chosen because they are quickly trained and do not require optimizing the 
network topology when adding new features to a growing network.  In the initial pass, a 
single-node Bayesian network is constructed from each of the features, and its classification 
performance and predictive power is scored.  To score each network, the initial set of 
training images is split into a training and test set multiple times, and the classification 
performance is averaged for all splits.  Typically, 35% of the images are reserved for testing 
in each split, and 35 splits are averaged together for the network score. These parameters 
have not been systematically calibrated, but proved effective for the datasets evaluated.  The 
feature producing the highest-scoring network is retained for the second pass.  In 
subsequent passes, each of the remaining features is added to the network one by one and 
the network score is determined.  These passes continue until the network score no longer 
improves by the addition of new features. Generally the number of features selected 
depends on the number of classes in a classification problem, yielding classifiers with about 
as many nodes/features as there are classes.  This also varies to some extent depending on 
the separability of the image classes.  

4. Experimental Results 

In order to evaluate the efficiency of the proposed approach four distinct image data sets 
were chosen based on application diversity.  This small diverse set includes images of 
fluorescently-labeled cells grown in culture, optical sections of aerogel used to characterize 
particle traces in the Stardust space probe experiment, fluorescently-labeled muscle tissue, 
and an organ imaged using differential interference contrast. 
The first pair of examples illustrates the effectiveness of the classifier using two very 
different image types that are particularly challenging for segmentation-based image 
analysis.  The first example (Figure 4) is from an HCS experiment looking for genes that 
disrupt the formation of fringes or “ruffles” surrounding cells.  These ruffles are thought to 
be important for cell migration, and consequently for the invasiveness of cancer cells as well 
as developmental abnormalities.  The images tested are the control images for the screen, 
where absence of ruffling is induced by a gene known to have this effect, and these images 
are contrasted with those of normal cells that display the ruffling.  The complete experiment 
would look for additional genes from a 35,000-gene library that mimic the “no ruffling” 
morphology (i.e. appear similar to the “no ruffling” control).  Various aspects of the images 
are irrelevant for the purposes of the screen – the cell density and distribution, the overall 
intensity of the images, etc.  These irrelevant variations are included in the set of control 
images for the screen, and are therefore averaged out in the course of training the classifier.  
It is not immediately obvious what sorts of image descriptors one would manually chose to 
differentiate these two classes.  Additionally, these images do not appear to be amenable to 
segmentation-based approaches. Instead, a data driven approach of using a training set to 
identify relevant features from a large diverse feature set effectively addresses this type of 
imaging problem (see Table 1). 
The second application (Figure 5) involves control images from the Stardust comet dust 
project. In control experiments, iron grains were shot into aerogel using a dust accelerator. 
Images were generated by collecting optical sections of aerogel on a  microscope. The goal of 
this classification task is to differentiate images that contain tracks left by dust particles (see 
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Figure 5, box) from images lacking these tracks. This problem is complicated because all 
images contain artifacts. While this type of problem can probably be easily addressed with a 
segmentation algorithm and a discriminator based on the form factor of the segmented 
objects, this would take significant manual tinkering. However, the same algorithms and 
parameters used in the previous example worked well without requiring any new software 
or manual parameter adjustment to work equally well on this very different imaging 
problem.

Fig. 4.  Images of Ruffling phenotype.  Panel 1 shows a field of cells exhibiting the normal 
ruffling behavior.  Panel 2 shows the effect of a knocking down the expression of a gene 
known to be required for the ruffling phenotype. 

Fig. 5.  Images of aerogel from the Stardust project. Panel 1 shows an image containing both 
a track caused by a dust particle (surrounded by the black frame) and artifacts. Panel 2 
shows an image containing only artifacts. 

1 2
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Classification accuracy for these two problems is shown in Table 1. Accuracy is defined as 
the ratio of correct class assignments to the number of test samples.  

Data set Accuracy 

Ruffling cells 0.92 

Stardust 0.87 

Table 1. Classification results for Ruffling cells and Stardust data sets. These accuracies are 
averages of 5 separate divisions of training and test images. Ruffling dataset had 616 
training and 2648 test images while the Stardust dataset had 2072 training and 1358 test 
images. 

It is of considerable medical interest to identify compounds and genes that affect the aging 
process. The effects of these compounds or genetic mutations can be quantified if a 
morphological age can be computed independently of temporal age. C. elegans is a small 
earth-dwelling worm used as a model organism in genetic, development, aging and 
behavioral studies.  Its transparency to visible light, short lifespan, and its well characterized 
development and genetics make it an ideal organism for aging studies. In the next two 
studies, the goal is to determine a morphological age based on a microscope image of the 
worm.

Fig. 6.  Aging of body wall muscle in C. elegans.  Progressive muscle degeneration in the 
body wall muscle corresponds to 1,  4, 6, and 8 days after molting. 

Fig. 7.  Aging of pharynx terminal bulb in C. elegans.  Progressive degeneration of this organ 
corresponds to 0,  2, 4, 6, and 8 days after molting. 

These two studies illustrate a general problem of using images to determine the degree of 
progression through a continuous morphological process.  A distinguishing characteristic of 
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this type of problem is that there can be considerable uncertainty about the “ground truth” 
with regard to individual images. On average, the images in a class belong to a known stage 
along this process, but the exact stage of individual images within the class is far less certain.  
The individual images in a class may not be precisely synchronized, and the morphological 
process itself can be subject to substantial stochastic effects. In the specific case presented 
here, it is known that individual worms can be synchronized at best to within 4 hours.  
Additionally, individual variability is easily seen in the images collected on a given day, and 
it is known that a synchronized genetically identical population does not die synchronously, 
but over a span of 7 to 15 days, which indicates a further loss of synchrony during the 
process.  This supports the prediction that individual images will not be readily classified, 
and that there will be considerable spill-over between adjacent classes.  This would not be a 
problem in an actual experiment because the treatment would be applied to many 
individuals, allowing for the use of averaging to evaluate its effect. 
These two applications differ in the aging effect being assayed and in the types of images 
collected.  In the first study (see Figure 6), the actin fibers of muscle cells throughout the 
worm are fluorescently labeled and imaged on a fluorescence microscope.  In the second 
study (see Figure 7), a non-invasive imaging technique that does not require stains or dyes 
for contrast development (differential interference contrast – DIC) is used to visualize a part 
of the worm’s eating apparatus – the pharynx terminal bulb. 
Classification accuracy is not a relevant measure of classifier performance for these two 
applications because the goal is to measure change rather than class assignment.  Instead, 
the relevant measure is the correlation between the known and computed ages of the 
classes. The age of each class is computed by averaging the computed ages of its member 
images. Formula (12) defines an age metric (m) for an individual image in terms of a 
weighted sum of known class ages (ac). Weights are the probability (pc) reported by the 
Naïve Bayesian classifier of the image belonging to a particular class (c).. 

m = pcac , (12)

The averaged marginal probabilities for each class are reported in Tables 2 and 3 for body 
wall muscle and pharynx respectively.  The corresponding correlation factors were 0.95 and 
0.88 for muscle and pharynx images respectively. 

Table2.Confusion matrix of averaged marginal probabilities for body wall muscle. 

Test Data Day 1 Day 4 Day 6 Day 8 

Day 1 0.39 0.27 0.22 0.12 

Day 4 0.24 0.47 0.15 0.14 

Day 6 0.24 0.15 0.39 0.22 

Day 8 0.12 0.15 0.25 0.48 
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Table 3. Confusion matrix of averaged marginal probabilities for pharynx. 

From inspecting the marginal probabilities in tables 2 and 3, it is clear that there is 
considerable spill-over to neighbouring classes.  However, the probabilities on the diagonal 
are still strongest, which indicates that accurate classification can still be achieved if a 
sufficient number of individual images are averaged together. 

5. Image Similarity 

The last two experiments in the previous section established a baseline of the aging process 
from which to evaluate effects of experimental manipulations. Aging, being a continuous 
morphological process, presents a useful means of validating image similarity measures.  
Simultaneously, image similarity can refine our understanding of aging by answering 
questions like “Are there distinct stages in this morphological process?” Additionally, 
reliable image similarity measures are necessary for quantifying class separability, 
identifying new morphological clusters, or using image queries for content-based image 
retrieval.
Image similarity is most commonly computed as a distance between vector representations 
of a pair of images. Each vector defines a point in a high-dimensional space. The feature 
vectors described in Section 2 form one such space. This raw feature space suffers from the 
“curse of dimensionality” – a large number of possibly noisy dimensions. This problem can 
be addressed by constructing a calibrated subspace to emphasize signal and dampen noise.  
In such a calibrated space, meaningful distances between images can be determined.  
Distance matrices can be used to construct dendrograms that visualize population trends. 
Dendrogram algorithms build a minimal spanning tree from distance information. Branch 
lengths in a dendrogram indicate similarity between images, and branch angles are 
inconsequential.  Every pair of images is connected by a path; the more similar a pair of 
images, the shorter the path. In the results given below (Figure 8), a heatmap was applied to 
represent the known age of each node as a color.  

Test Data Day 0 Day 2 Day 4 Day 6 Day 8 

Day 0 0.95 0.03 0.01 0 0.01 

Day 2 0.04 0.48 0.21 0.14 0.13 

Day 4 0.01 0.25 0.29 0.22 0.23 

Day 6 0.00 0.14 0.24 0.35 0.27 

Day 8 0.01 0.16 0.24 0.29 0.30 



Vision Systems - Segmentation and Pattern Recognition 236

Fig. 8.  Individual images of worm pharynx at different ages are represented by colored 
circles and plotted on dendrograms using distance measures from two types of feature 
space (see text).  The color of each circle represents the known age of each worm in the 
image.  Panel A was constructed from a normalized subspace, and Panel B from a 
normalized and weighted subspace. 

In Figure 8, individual images of worm pharynx (see Figure 7 for image examples) are 
represented by colored circles in dendrograms computed from two different feature spaces.  
Normalization of the feature space was accomplished with a linear offset and scaling to a 
uniform range. Panel B of this figure was constructed from a normalized and weighted 
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subspace. The subspace was formed by first normalizing then scaling each dimension by its 
Fisher Discriminant score (see Section 3). Thirty-five percent of the lowest-scoring 
dimensions were excluded from this space. Dimensional weighting is commonly used in 
pattern recognition to construct a subspace in which meaningful distances can be 
determined (Parades & Vidal, 2006; Ricci & Acesani, 1999). Pair-wise Euclidean distance 
matrices between individual images were computed in these two spaces. The unrooted 
dendrograms were calculated from the distance matrices with the Fitch-Margoliash method 
implemented in the Phylip software package (Felsenstein, 1989). The heatmap representing 
the known age of the worms was applied subsequently. 
The normalized full feature space places nearly all images equidistant to each other, which 
is not meaningful. An exception not shown in the figure is one image whose mean distance 
to other images was 10,000 times the median value. The FD-weighted feature subspace 
produces a gradient from young (red, left) to old (blue, right). The FD scores were calculated 
from unordered class information, yet the subspace yields class ordering. This indicates that 
the FD-weighted subspace can be used for biologically meaningful measures of similarity. 

6. Algorithm Execution Frameworks and the Open Microscopy Environment 

Several practical problems emerge when calculating features on large image sets. Full 
computation of features can take several days for a thousand-image dataset. To avoid 
recomputation, extracted features need to be stored systematically. To save time when 
classifying experimental images, it is desirable to calculate only the subset of features 
identified during dimensionality reduction. Additionally, when a feature bank is extended 
with more algorithms or permutations, reusing previous results can save considerable 
amounts of time. A workflow manager and informatics infrastructure addresses these 
problems better than simply unleashing all of these algorithms on folders full of image files.  
The Open Microscopy Environment (OME) provides an image informatics infrastructure 
which includes facilities for archiving images, meta-data and analysis results.  It also 
provides an Analysis System which executes image-processing algorithms in complex 
workflows, stores algorithm state and results in a database, and distributes algorithm 
execution across multiple networked computers. Results from any point in the workflow 
can be exported out of the OME database for subsequent analysis.  The image features 
presented in Section 2 were computed in OME, and exported into MATLAB.  Subsequent 
dimensionality reduction,  signature weighting, dendrograms, and machine learning were 
performed with other software.  Future plans are to integrate this functionality more tightly 
into OME. 
OME is an open source software suite with a thin-client/server architecture (Goldberg et al., 
2005; Swedlow et al., 2003). Users access OME using an internet-browser connecting to an 
extensible, dynamically generated web interface (Johnston et al., 2006). Based around a 
PostgreSQL database, OME has a middleware layer that provides functionality such as 
access control, user settings, and image annotation. OME data and computations are 
performed entirely server-side, optionally using a dedicated cluster. OME is designed to 
handle gigabytes of high-dimensional microscopy and medical imaging formats, as well as 
generic TIFF images.  
OME algorithm wrappers are called AnalysisModules and are defined using the eXtensible 
Markup Language (XML) (Achard et al., 2001). AnalysisModule definitions are comprised 
of two sections: (1) the data modeling section describes the module’s name, description, 
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inputs and outputs and (2) the execution instructions section specifies the interface to the 
algorithm’s implementation (Macura et al., 2005). 

Fig.  9. Top Panel: the ChainBuilder Tool is a user interface for building complex workflows. 
Bottom Panel: Schematic of the feature extraction workflow (See Fig. 2, Section 2) built using 
ChainBuilder. 
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AnalysisModules’ inputs and outputs can be connected interactively using the ChainBuilder 
GUI Tool (See Figure 9), to form workflows called AnalysisChains. After the image 
processing workflow has been modeled as an analysis chain, the workflow is executed by 
the OME Analysis System against images managed by OME. The OME Analysis System 
exploits branching in AnalysisChains to realize that some AnalysisModules can be executed 
concurrently.  This concurrent execution can occur on a local multi-core node as well as 
remote nodes connected on a network. 
OME overhead on a single processor is insignificant (5% of the execution time) and 
distributed computing is significantly faster (6x using 4 dual-core processors) than executing 
the algorithms natively in MATLAB. The results from executing algorithms in OME and 
storing intermediary results in a database and middle-layers agree to native algorithm 
execution results to the precision expected for 32 bit floating-point representation. 
The OME software, implementations of feature extraction algorithms discussed in Section 2, 
along with AnalysisModule wrappers and AnalysisChains are all available for download 
from openmicroscopy.org. 

7. Summary and Conclusions  

This chapter discusses a general computer vision approach to the problem of automatic 
image classification and similarity measurements.  The approach is based on using a large 
number of image descriptors followed by automated dimensionality reduction and classifier 
training.  Calculation of feature descriptors was implemented as a component of OME, a 
system for collecting, archiving, annotating and analyzing images and metadata.  High 
dimensional abstract feature sets are needed to allow universal context-independent 
description of image content. These descriptors in themselves are not sufficient to fully 
describe image content because their relative importance must first be determined in a given 
context.  Context can be provided by example using training sets and supervised learning to 
determine which descriptors are important and which are not.  This context-dependent 
weighing of descriptors leads to feature sets that correlate well with independently 
determined measures of image similarity. 
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1. Introduction     

A central goal in signal analysis is to extract information from signals that are related to real-
world phenomena. Examples are the analysis of speech, images and signals in medical or 
geophysical application, to name it a few. One reason to analyze such signals is to achieve 
better understanding of the underlying physical phenomena. Another is to find compact 
representations of signals which allow compact storage or efficient transmission of signals 
through real-world environments. The methods of analyzing signals are wide spread and 
range from classical Fourier analysis to various types of linear time-frequency transforms 
and model-based and non-linear approaches. 
Wavelet methods in image processing, analysis, compression, superresolution and 
enhancement are widely present in many researches such as biomedical applications, 
technology, industry, robotics, space explorations, military, etc. Wavelets have evolved over 
years. The theory of the first generation of wavelets (FGW) is originated on filter banks 
theory which includes classical Fourier analysis techniques (Mallat, 1999; Vetterli & 
Kova evi , 1995). Classical Fourier analysis is an irreplaceable tool in many engineering 
fields for years, and was solved many problems of linear-time invariant systems that include 
finding a spectrum of stationary signals (Proakis & Manolakis, 2006). For a non-stationary 
character of measured signal that spectral content is changing over time, classical Fourier 
analysis has shown weaknesses.  The Fourier analysis only partly solves mentioned 
problems, a new approach is needed which will give a new insight into signal properties in 
a different way. Proposed new approach has been time-frequency analysis, i.e. a signal 
representation in time-frequency plane. The most popular time-frequency analyses are the 
short-time Fourier Transform (STFT) which is also called the classical method of time-
frequency analysis and Wavelet Transform (WT or FGW) which is also called the time-scale 
analysis (Mertins, 1999). Wavelet transform brought flexible windows for analysis. The 
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second generation wavelet transform (SGW) is a newly proposed wavelet transform where 
the filters are not designed explicitly, but the transform consists of application of the lifting 
scheme. The sequence of lifting steps could be converted to a regular discrete wavelet 
transform, but it is unnecessary because both design and application is made via the lifting 
scheme (Sweldens, 1996, Daubechies & Sweldens, 1998). Measured signals of the main 
interest are not periodic. The area of the interest is not always finite and one-dimensional 
signals are not always uniformly sampled. At two or more dimensions (i.e. irregular 
surface) even more complicated situation arises. The FGW localize time-frequency well. 
Developed fast algorithms for FGW would be adopted in some way, by giving up 
dilatations and translation. Second generation wavelets (SGW) have updates and 
predictions instead of filter representation, the SGW have polyphase representation (Jansen 
& Oonicx, 2005). Factorization by lifting steps was a new approach, which introduces a new 
quality in computation of wavelet and scaling coefficients. Lifting transform can be applied 
to FGW as well. Then computationally interesting polyphase matrixes are obtained, which 
become triangle or scalar for the FGW. It is possible to construct FGW on the SGW settings 
and vice versa, but the SGW are so powerful that there is no need for transformation of 
SGW to FGW. The nanotechnology is the reason for improvement of SGW. Namely, 
research of nanostructures needs better characterization of atoms. The third generation 
wavelets (TGW) are proposed in (Xiao 2003, Jiang 2003, Vujovi  et al., 2006a; Vujovi  et al., 
2006b). Wavelets have showed they are unlike numerous techniques which only remain 
popular for a short period of time – and they demonstrated ability to adopt.  
Wavelets have shown great potential and abilities in various technical applications (Šoda, 
2005). Nowadays, they are topical in image processing for on and off-line applications 
(computer vision, robot vision, security systems, etc).  
Object segmentation through human-robot interactions in the frequency domain (Arsenio, 
2003) was based on segmentation of windowed FFT. But, windowed FFT can be easily 
transformed to WT. Segmentation of colour images with fast wavelet transform is presented 
in (Chan et al, 2005). 
Interesting application of wavelets for progressive edge detection and edge defection 
prediction has been developed in the XXI century (Abbas & Alsultanny, 2005). It exploits the 
observation that wavelet decomposition at higher levels degrades the image in the sense of 
leaving almost nothing but edges. However, their progressive and predictive detection is 
based on simple ones. It is not preferable in nowadays science, because everyone tries to 
find more and more complicated methods. Authors of this chapter evoke for such approach 
on many occasions. It is the best when you get satisfactory results with simple and elegant 
methods.  
Compression of data, including image compression, is one of the most outstanding 
applications of wavelets. Some older examples are in references (Heer & Reinfelder, 1990; 
Said & Pearlman, 1996; Calderbank et al., 1997; Akay, 1998). Nowadays, influence of 
wavelets in many compression applications is being researched, i.e. in biomedical imaging 
(Vujovi , 2004; Vujovi  et al, 2003.). Powerful compression possibilities of wavelets have 
been exploited in many applications, off and on-line, for single images and for image 
sequences. Wavelets are incorporated in JPEG-2000 standard as well and security (Boles, 
1998; Grosbois, 2003; Dai & Yuen, 2006). However, their ability in denoising and 
compression often depend on thresholding. Automated methods for thresholding are of 
great interest for wavelets. 
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Wavelet compression ability gave rise to the idea of reverse process using them for 
obtaining higher resolutions. A great interest exists for such superresolution issues in the 
military, security, police, etc., as well as scientific community (Candocia, 1998; Nguyen, 
2000; Bose, 2003; Borman, 2004; Chappalli & Bose, 2005). 
This chapter describes an interesting approach in wavelet usage for image processing. 
Superresolution is used for image enhancement before compression by downsampling. The 
entire process is performed on the wavelet coefficients. 

2. Wavelet generations 

Heisenberg principle is interesting in the time-frequency domain, because it states that there 
is a limitation of measurement for time and frequency at the same time. If we can measure 
time and frequency infinitely precisely, the product of time and frequency is bounded 
according to Heisenberg principle. Actually, Heisenberg states that we can measure only 
time or only frequency with infinite precision. The product of time interval, Δt, and 
frequency interval, Δf, is constant. 
This window is area in which it is presumed that amplitude is unchanged (of course, that is 
only a rough approximation in practice, which introduces error). The consequence of such 
window size is the worst resolution of time at high frequencies and the worst resolution of 
frequency at lower frequency range. Wavelet analysis is a multiresolution analysis (MRA): 
rectangles are vertically elongated at high frequencies, which means better time resolution 
and horizontally elongated at low frequencies, which means better frequency resolution. 
This limitation is better described by tiling scheme presented in Fig. 1.  

a)                 b) 
Fig. 1.  Tiling scheme: a) STFT – same window for frequency and time for high and low 
frequency range, b) MRA – windows have the same surface, but different edge lengths 

Once a window has been chosen for the STFT, then the time-frequency resolution is fixed 
over the entire time-frequency plane since the same window is used at all frequencies. To 
overcome the resolution limitations of the STFT one can imagine letting the resolution t
and f vary in time-frequency plane in order to obtain a multiresolution analysis. The 
analysis filter bank is then composed of band pass filters with constant relative bandwidth, 
so called "constant Q-analysis". 
The integral transform is one of the most important tools in signal theory (Mertins, 1999). 
Fourier transform is the best known example, but there are many other transforms, such as 
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Hartley and Hilbert, that can be derived from the integral signal representation. In the 
following, we will briefly outline the basic concept of integral transform. 
The basic idea of an integral representation is to describe a signal x(t), that is integrable in 
Lebesque sense and closed on L2(R), via its density X(s), that is also integrable in Lebesque 
sense and closed on L2(R), with respect to arbitrary kernel (t,s):

)(),()()( 2 RLTtdsstsXtx
S

⊆∈= ϕ  (1) 

Using analogous approach, and denoting (s,t) as reciprocal kernel, the density X(s) can be 
calculates in the form: 

⊆∈=
T

RLSsdttstxsX )(),()()( 2θ  (2) 

By substituting (2) in (1) it can be obtained: 

( ) ( , ) ( , )( )
T S

x s t s ds dx t τ θ τ ϕ τ⋅ ⋅ ⋅=  (3) 

In order to state the condition for the validity of (3) in a relatively simple form the so called 
Dirac impulse  (t) is required. A generalized function x (t) then can be presented as follows: 

( ) ( ) ( )
T

x t x t dτ δ τ τ= ⋅ − ⋅  (4) 

Equations (3) and (4) show that the kernel and reciprocal kernel must satisfy: 

( , ) ( , ) ( )
S

s t s ds tθ τ ϕ δ τ⋅ ⋅ = −  (5) 

Similarly, by substituting (1) in (2), and then applying the same approach as above, implies:  

( , ) ( , ) ( )
S

t s t dt sϕ σ ϕ δ σ⋅ ⋅ = −  (6) 

A special category is that of self-reciprocal kernels. That corresponds with orthonormal 
bases in the discrete case and satisfies: 

( , ) ( , )t s s tϕ θ ∗=  (7) 

 Transforms that contain a self-reciprocal kernel are also called unitary transforms.  
Let x (t) be a real or complex-valued continuous-time signal which is integrable in Lebesque 
sense. For such signals the Fourier transform exists: 

( ) ( ) j tX x t e dtωω
+∞

− ⋅ ⋅

−∞

= ⋅ ⋅  (8) 

Here ω = 2⋅ π ⋅ f and f is the frequency in Hertz. 
If X ( ) is also integrable in Lebesque sense, x (t) can be reconstructed from X ( ) via the 
inverse Fourier transform: 
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The kernel used is: 
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and for reciprocal kernel we have 

( , ) ,j tt e Sωθ ϖ − ⋅ ⋅= ∈ −∞ +∞  (11) 

From the equations (10) and (11) it can be seen that trigonometric functions form a basis that 
span the Fourier space. Trigonometric functions satisfy (5), i.e. they form the orthonormal 
basis on Fourier space. Also, the support of trigonometric functions is infinite in the time 
domain, which means that localization in the time is poorly determined, i.e. time resolution 
is poor. Unlike to time domain, in frequency domain Fourier transform gives perfect 
resolution, since trigonometric functions can be described with Dirac impulse. Heisenberg 
principle of uncertainty does apply here too. 
The wavelet transform W (a, b) of a continuous-time signal x (t) is defined as: 
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Thus, the wavelet transform can be viewed, and is computed, as the inner product of x (t)
and translated and scaled versions of a single function  (t), the so-called wavelet. A wavelet 
function  (t) is a function of zero average. If  (t) is considered to be a bandpass impulse 
response, then the wavelet analysis can be understood as a bandpass analysis. By varying 
scaling parameter b the centre frequency and the bandwidth of the bandpass are influenced. 
The variation of a simple means a translation in time, so for a fixed b the transform (12) can 
be seen as a convolution of x (t) with the time-reversed and scaled wavelet 
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Time and frequency resolution of WT depends of b. For high analysis frequencies, good time 
localization but poor frequency resolution can be achieved. On the other hand, for low 
analysis frequencies, good frequency but poor time resolution can be achieved. When using 
a transform in order to get better insight into the properties of a signal, it should be ensured 
that the signal can be perfectly reconstructed from its representation. Otherwise the 
representation may be completely or partly meaningless. For WT the condition that must be 
met in order to ensure perfect reconstruction is: 
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ω
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−∞
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Where  ( ) denotes FT of the wavelet. This condition is known as the admissibility 
condition for the wavelet  (t).
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Discrete wavelet transform (DWT) is based on multirate filter banks theory. There are two 
possible ways to obtain coefficients of DWT, by applying one of the two MRA algorithms, or 
by sampling CWT coefficients. The following dyadically arranged sampling points are used: 

2 , 2m m
m mn mb a b n T n T= = ⋅ ⋅ = ⋅ ⋅  (15) 

This yields the values Wx (amn, bm) =Wx (2mnT, 2m). Furthermore, 
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Finally, (12) becomes: 

( , ) (2 ,2 ) ,m m
x mn m x mnW a b W nT x ψ= =  (17) 

The values {Wx (2mnT,2m), m,n ∈ R} form the representation of x (t) with the respect to the 
wavelet  (t) and the chosen grid. We cannot assume that any set mn(t), m, n ∈ R allows 
reconstruction of all signals x(t) ∈ L2(R). For this a dual set )(~

, tnmψ , m, n ∈ R must exist, and 

both set must span L2 (R), any x(t) ∈ L2(R) can be written as: 
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Alternatively, x(t) can be written: 
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For a given wavelet (t), the possibility of perfect reconstruction is dependent on the 
sampling interval T. If T is chosen very small i.e. we have oversampling, the values 
{Wx(2mnT,2m), m,n ∈ R} are highly redundant, and reconstruction is very easy. Then the 
functions mn(t), m, n ∈ R are linearly dependent, and an infinite number of dual sets ( )mn tψ
exists. The question of whether a dual set ( )mn tψ exists at all can be answered by checking 
two frame bounds A and B. It can be shown that the existence of a dual set and the 
completeness are guaranteed if the stability condition: 

22 2
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with the frame bounds 0 A B< ≤ < ∞  is satisfied (Mertins, 1999). The higher the frame 
bounds are, the smaller is the reconstruction error. In the case of a tight frame, A = B, perfect 
reconstruction with ( ) ( )mn mnt tψ ψ= is possible. With MRA and wavelets resolution is 
degraded or enhanced by necessity. MRA trades off between both resolutions.  
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a)      b) 

Fig. 2. a) Interaction of the single pixel to the neighbours, b) interaction between two pixels 

When talking about images, WT is two-dimensional. The error in image analysis begins 
with digitalization. Namely, in sensors. Sensors are not continuous. They are usually CCD 
arrays. The basic starting point is that light has the same frequency and amplitude over a 
single CCD cell. It is not true. However, it is often a good enough approximation. To obtain 
better image quality, more details must be obtained by some form of interpolation method.  
Interpolation method can be primitive and simple or more sophisticated. Transition from a 
low-resolution image to a more detailed (high resolution image) does not depend only on 
the observed pixel, but also on its neighbouring pixels. But how can the neighbouring pixels 
be accounted for? I.e. are the pixels in diagonal positions less influenced by the observed 
pixel and vice versa? The solution is in introduction of weights for pixels. If this is 
performed on FGW coefficients we call the product “intuitive wavelets”: 

kjkj ddtttxbabaW ,, )()(),(),( =⋅≅ ∗ψρ   (21) 

where ρ(a, b) is the weight function. Observe that if ρ(x, y) is the weight of the pixel, then 
this is propagating through WT into ρ(a, b), because the weight function is just a set of 
constants. Introduction of weights can be interpreted as primitive type of SGW. Therefore it 
can be said that this is the SGW on the FGW settings. However, SGW can be introduced for 
discrete signal and linear filters, which perform perfect reconstruction in z-domain.  
Polyphase representation of signal X(z) = Xp(z2) + z-1Xn (z2) where Xp i Xn even and odd 
samples of the signal x and can be written as:  
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The final result is the polyphase matrix of the system: 
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In simulations and numerical experiments, the result is the estimated matrix P~ and the error 
P - P~ has to be minimized. Filtering is directly performed on either even or odd samples, 
which breaks down number of operations by factor 2. 
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Fig. 3. Perfect reconstruction in Z-domain

The authors propose that FGW and SGW pass the morphology preprocessing in order to 
emphasize edges. Wavelet coefficients obtained by that manner can be called the third 
generation wavelets (TGW). This will facilitate further enhancement in different 
applications. An algorithm for TGW is proposed in (Vujovi , Kuzmani  & Vujovi , 2006a), 
but it is not the only way. When talking about TGW, another possibility can be to enhance 
wavelet coefficient matrixes by i.e. motion field. If stationary image is processed, then quasi-
superresolution has to be used. 

3. Flexible algorithm 

Many algorithms for edge detection, segmentation or compression exist. Some of them are 
based on wavelets. However, wavelets have some properties which can be used for different 
operations. The proposed algorithm exploits these properties. 

3.1. Wavelet motion field 

Let us consider an image sequence I(pi, t) with pi = (xi, yi) ∈ Ω the location of each pixel in 
the image. The brightness constancy assumption states that the image brightness I(pi, t+1) is 
a simple deformation of the image at time t: 

 I(pi, t) = I(pi + v(pi), t + 1)   (23) 

where v(pi, t) = (u, v) is the optical flow between I(pi, t) and I(pi, t+1). This velocity field can 
be globally modelled as a coarse-to-fine 2D wavelet series expansion from scale L to l (Bruno 
& Pellerin, 2002): 
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where
21 ,, kkLΦ (pi) is the 2D scaling function at scale L and H

kkj 21 ,,Ψ , V
kkj 21 ,,Ψ , D

kkj 21 ,,Ψ are wavelet 

functions which represent horizontal, diagonal and vertical directions. These functions are 
dilated by 2j and shifted by k1 and k2. The solution can be found by usage of some error 
function and minimization, i.e. (Bruno & Pellerin, 2002; Bruno & Pellerin, 2001): 
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and the motion wavelet coefficient vector, θ, is calculated by: 

)(minarg Eθθ =   (26) 

Once motion wavelet coefficients have been estimated for each frame fi of a sequence S
containing M frames, anyone can obtain a feature space spanned by the motion feature 
vectors θi, i = 1, ... M. To temporally segment the feature spaces Ωseg (spanned by θseg), 
(Bruno & Pellerin, 2002) consider a hierarchical classification with a temporal connexity 
constraint. 
Another approach is only formally different (Wu et al, 1998). Approximation of motion 
vector, θ = [u(x,y)  v (x,y)]T, by using two-dimensional basis functions, is a natural extension 
of one-dimensional to two-dimensional basis functions of the tensor product. Accordingly, 
the two-dimensional basis functions are: 
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where the subscripts j, k1 and k2 represent the resolution scale, horizontal and vertical 
translations and the upper subscript H, V and D represent the horizontal, vertical and 
diagonal directions. Two dimensional motion vector can be expressed in terms of linear 
combinations of coarsest-scale function (13) and horizontal, vertical and diagonal wavelets 
(14 - 16) in finer levels. Motion vectors are (Wu, 1998): 
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where uj in all directions is expressed as: 
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v-1 and vi are calculated analogly. Maximum likehood estimates [u(x, y) v(x, y)]T are 
obtained by minimizing: 
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Equations (31 – 35) are easier for implementation than (23 – 26). They can be approximated 
as differences of neighbouring approximation, diagonal, vertical and horizontal coefficients. 
This approximation is used in quasi-superresolution algorithm (Vujovi  et al., 2006a; 
Vujovi  et al., 2006b). 

3.2. Superresolution and quasi-superresolution 

Superresolution includes restoration as a special case. The restoration equation can be 
rewritten within the superresolution framework as (Nguyen & Milanfar, 2000): 

 fk = DCkEkx + nk = Hkx + nk  (36) 

where p is the number of available frames and 1 ≤ k ≤ p, fk is an N x 1 vector representing 
the kth m x n LR image in columnwise order. If l is the resolution enhancement factor in each 
direction, x is an l2N x l vector representing the lm x ln HR image in columnwise order, Ek is 
an l2N x l2N warping matrix that represents the relative motion between frame k and a 
reference frame, Ck is a blur matrix of size l2N x l2N, D is the N x l2N uniform down-
sampling matrix, and nk is the N x 1 vector representing additive noise. Particularly in case 
of quasi-superresolution, only one image is available (k = 1). Than, superresolution problem 
can be replaced with filtering and (36) transforms to: 

  f = DCEx + n = Hx + n   (37) 

Since, only in ideal case n = 0, (37) means that HR image is “less clear”, which is totally 
subjective description. 

3.3. Algorithm flow 

The input image can be processed by morphology operations, but it is optional (block 1 in 
Fig. 4). 
Noise reduction is in the nature of WT, so it is not included in the algorithm. It is also 
possible to combine the original and processed image. Then it must be chosen which 
transformation to use (filter or lifting approach). WT is performed between blocks 3 and 4.  
Thresholding can be performed if necessary as the preprocessing for the compression or 
simple for denoising. This option can be performed automatically or manual. Next step is to 
enhance image incorporating wavelet motion field. When dealing with stationary stand 
alone image (i.e. in biomedical diagnostic images such as X-rays), motion field calculation is 
performed in quasi-superresolution manner (Vujovi  et al, 2006a). This is relative “motion” 
between wavelet coefficients. In on-line sequences quasi-superresolution can be performed 
when higher image resolution is necessary and motion can be resolved in some other way if 
someone do not prefer wavelet motion field. Then we can perform what we need. Edges are 
obtained by adding all four motion matrixes obtained in quasi-superresolution manner. 
When approximation is down-sampled several times and reducing number of colours edges 
can be pointed out as well. When subtraction of motion matrixes from the enhanced original 
(previous steps) is performed, a good segmentation is obtained. If enhanced original is put 
through quasi-superresolution algorithm, HR image can be obtained.  
Compression of images can be performed with or without reconstruction at HR grid. 
Compression can be obtained by thresholding of wavelet coefficients or by downsampling 
of wavelet coefficients. Multiple downsampling is proven to be useful for compression 
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(Vujovi , 2004) in case study about pulmonary X-rays, when downsampling is performed 6 
to 12 times without influence to the medical diagnosis. Of course, it is not generalized. 

Input image

Lifting wavelet 
    transform

Thresholding

Motion field in 
wavelet domain

Reconstruction 
   at HR grid

Morphology (for 
better segmentation)

Discrete FGW 
    transform

Compression from LR

Compression 
from HR

      Multiple 
downsampling

Output data

Segmented 
    image

Edges

1

2

3

4

5

6

7

8

9

Fig. 4. Flexible algorithm for wavelet segmentation, edge detection and compression 

4. Results 

Times of execution depend from computer to the computer, so it is very difficult to 
compare. We executed algorithm on NEC notebook with Athlon XP-M AMD processor with 
1.67 [GHz] and 480 [MB] RAM size with Windows XP operating system. Hard disk is half 
full and Norton Antivirus is active.  
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Fig. 5. Motion field execution on wavelet coefficients in stand alone image with quasi-
superresolution reconstruction to HR grid 

Type of wavelets 
(Matlab

designation)

Time of execution 
of

filtered WT [s] 

Time of execution 
of

lifted WT [s] 

Improvement in 
percentage [%] 

bior1.3 12.768 11.978 6.18 
rbio1.3 12.598 12.528 0.55 

haar 12.128 11.536 4.88 

Table 1. Comparison of wavelet quasi-superresolution execution time 

Fig. 5 to 12 shows some of the results. Figures are chosen to open discussion. There are 
better and worse examples. 

Fig. 6. Reconstruction after wavelet motion field for FGW haar 
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Fig 7. Simple edge detection by usage of only motion field vectors without the original from 
downsampled approximation coefficients 

a)
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b)

c)
Fig. 8. A robot perspective: a) original image, b) edge detection by wavelet motion vectors 
with the original colour map, c) edge detection by wavelet motion vectors with the 
increased number of colours 
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a)

b)
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c)
Fig. 9. a) Classic zoom of the approximation, b) quasi-superresolution on approximation 
with FGW, c) quasi-superresolution on approximation by SGW 

a)
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b)

c)
Fig. 10. Addition of motion fields in all directions subtracted from the approximation at the 
first level: a) robot’s view, b) lifting WT, db2, c) lazy wavelet 
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a)

b)
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c)
Fig. 11. Image reconstructed from: a) down-sampled original (motion-vector enhanced 
before), coefficients were not up-sampled (IDWT, db2), b) twice down-sampled original 
(motion-vector enhanced), not up-sampled coefficients (IDWT, db2), c) twice down-sampled 
original (motion-vector enhanced) and not up-sampled coefficients before (ILWT, db2)  

a)     b) 
Fig. 12. a) Original image, b) wavelet motion field edge detection 

5. Example in medical imaging (Vision system for X-rays) 

One of applications of vision systems is in medicine. Every modern hospital has Hospital 
Information System (HIS) or Picture Archiving and Compression System (PACS) at least in 
rudimental way. Telemedicine is old news. Our research started with compression of 
pulmonary X-rays for asbestosis infected patients. The problem was how to compress 
images without changing the diagnosis. In (Vujovi , 2004) the goal is reached for lossy 
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compression by down-sampling. Images were degraded in quality, but diagnostic value is 
preserved. Compression ratio obtained was 1:128 or higher (depending on type of wavelets).  
This was confirmed by three independent medical experts, as required by International 
Labour Organization. 

a)

    
b)
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c)
Fig. 13. a) Original X-ray of randomly chosen patient, b) motion field in wavelet domain 
(quasi- superresolution), c) approximation coefficients 

Fig. 13.a shows original of randomly chosen patient. In Fig. 13.b motion-field enhanced, 
quasi-superresolution image is shown. Fig. 13.c shows approximation coefficients. Fig. 14. 
shows results on compression for wavelet motion field enhanced X-rays. Compression ratio 
for lossless compression is 1 : 8.0211 in Fig. 14.d and 1 : 4.0189 for Fig. 14.c. 
Superresolution and quasi-superresolution are, in nature, processes of obtaining higher 
resolutions and more details. The question in this case is what do the new details mean. Can 
it be beginning useful in prevention of diseases by early diagnosis (when medical experts 
still can not see the illness)? Or is it a cause of error, because the new details do not mean 
illness. The new details could be only math creation without meaning in nature. Which of 
this is true? The second danger is in thresholding, because small shadows (which mean 
illness) can be deleted if not carefully used.  Medical diagnosis is not changed in such 
compression as illustrated. 
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a)

b)
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c)

d)
Fig. 14. a) Original X-ray, b) image down-sampled two times after wavelet motion field 
enhancement , c) image down-sampled three times after wavelet motion field enhancement, 
d) image down-sampled four times after wavelet motion field enhancement 

6. Conclusion 

Wavelets have evolved over years. FGW and SGW are still used and they are applied in 
more and more areas of research. Proposed algorithm is flexible, because of many options 
which can be used. It can be simple, but also complex. Disadvantage of many image 
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processing algorithms is that they do not give the same results on every class of images. So, 
they are not generalized. This algorithm has the same fate. It gives the best results for 
pulmonary X-rays with gray scale.
Time of execution is with active Norton Antivirus in Windows and Matlab with half-full 
hard disk. It would be considerable faster if it is executable stand alone application isolated 
and without antivirus application. There are a lot of programming solutions to make faster 
the algorithm. Since it is still in developing phase, we had the main interest in operation 
algorithm. Further work should include improvement of execution time. 
Potential area of application is biomedical imaging, because there is no need to take care of 
execution time. However, it could be used in virtual reality systems and systems of 
augmented reality. This is possible, because it is not necessary to execute the algorithm in 
real-time all the time. Algorithm can be performed occasionally, i.e. when scene is changed. 
In the meantime, only differences in frames can be processed. This can be improved by 
choosing only limited regions of interest for processing. 
It is important not to mix up motion field in an image sequence and in a stationary image. 
Motion field in the image sequence is defined as in section 3.1. Motion field in the stationary 
image is without sense, because there are no two frames to look for motions. However,  
quasi-superresolution states that we can find motion between neighbouring wavelet 
coefficients. So, this motion does not correspond to real motion in the observed scene. This is 
a novel idea, which helps in i.e. medical imaging, finger print analysis, human iris 
recognition, face recognition, etc. Fig. 12. shows potential of wavelet motion vectors in edge 
detection. Further research should be inclusion of colours and colour segmentation. 
Vision systems in medicine must be carefully used, because of misdiagnosis danger. I.e. in 
superresolution, when an un-seen detail shows up, it could mean that illness is discovered 
before medical expert could see it. But, it can be a false positive. If a vision system is used 
instead, the system must be checked by medical experts for any possible case. The algorithm 
could be incorporated in computer hardware and sell as medical vision system. It has to be 
checked by appropriate bodies in different countries before. 
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1. Introduction     

In this chapter we describe methods how to compress spectral imaging data. Normally the 
spectral data is presented as spectral images which can be considered as generalizations of 
colour images. Rapid technological development in spectral imaging devices has initiated 
the need for the compression of raw data. Spectral imaging has been central to many remote 
sensing applications like geology and environment monitoring. Nowadays, new application 
areas have arisen in industry, for example in the quality control of assembly line products 
and in applications, where the traditional three-chromaticity colour measurements are not 
accurate enough. Spectral imaging produces large amounts of raw data which will be 
processed later in various applications. Image compression provides a possibility to reduce 
the amount of raw data for storing and transmission purposes. The image compression can 
be either lossless or lossy. In the lossy compression the quality of the reconstructed data 
should be estimated to evaluate the usefullness of the reconstructed data. The lossy 
compression is justified in the sense that the compression ratios are much higher than in the 
lossless case where the reconstructed data is identical to the raw data. 
Spectral images are now available for different applications due to the development in the 
spectral imaging systems (Hauta-Kasari et al., 1999; Hyvärinen et al., 1998). Geoscience and 
remote sensing have been the main application areas of spectral images but nowadays 
several new application areas have emerged in industry. For example, applications in 
quality control, exact colour measurement, and colour reproduction use spectral 
information, since RGB colour information only is not sufficient.  
Image compression has been one of the main research topics in image processing. The 
compression methods are usually developed for images visible to humans, i.e. for grey-scale 
or RGB colour images. Applications in the field of remote sensing and recent advances in 
industrial applications, however require the compression of spectral images (Vaughn & 
Wilkinson, 1995). Some compression methods are lossless (Memon et al., 1994; Roger & 
Cavenor, 1996), but most of the methods are lossy (Abousleman et al., 1997; Gelli & Poggi, 
1999). Some applications can accept data which is compressed by a lossy scheme, but 
naturally the important features in the data must be present. If the lossy compression 
method cancels out any of the important features for the applications, then the lossless 
compression is the only possibility to decrease the amount of the raw data. 
Compression is required due to the large amounts of data captured in the images. Regular 
digital cameras in everyday use apply JPEG or TIFF-compression. Images displayed in web-
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pages are compressed with the same methods. Compression in these applications is 
accepted as a normal procedure as long as the visual quality is not reduced. 
With spectral images the memory or the transmission requirements are very high. 
Observations of Earth in spatial, spectral, temporal and radiometric methods produce data 
volume which is growing faster than the transmission bandwidth (Abousleman et al., 2002; 
Aiazzi et al., 2001). This means, that for long term storing or transmission, these databases 
should be compressed. The compression should be such that the spatial and spectral quality 
of the reconstructed image is high enough for the application. Table 1 shows examples of 
spectral imaging systems developed for remote sensing (Kerekes &Baum, 2002; Lillesand & 
Kiefer, 2000; AVIRIS, 2006; HyMap, 2006; HYDICE, 2006; Landsat, 2006; Hyperion 2006; 
Ikonos, 2006; OrbView, 2006; Aisa Eagle, 2006). 

Name # of 
channels 

Spatial 
resolution, m 

Radiometric
resolution, bits 

Raw data: 
kB/km2

Airborne     
M7 12 10 8 120 

AVIRIS 224 20 12 840 
HYDICE 210 3 12 35000 
HyMap 200 2 16 100000 

Aisa Eagle 244 0.5 12 1400000 
Spaceborne     
ERTS/MSS 4 80 8 0.6 

Landsat/TM 7 30 8 7.8 
Hyperion/EO-1 220 30 12 366.7 

IKONOS 4/1 4/1 11 1719 
OrbView-5 4/1 1.64/0.41 11 2045 
OrbView-4 200 8 8 31250 

Table 1. Examples of remote sensing systems. The spatial resolution for airborne sensors 
depends on the flight altitude. kB means kilobytes. 

As an example, one spectral Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 
(AVIRIS, 2006) tape, taken in one day, can have up to 16 GB of raw data. Large amounts of 
data are also recorded in an application for the quality control of ceramic tiles (Kälviäinen et 
al., 1998): imaging of 25 ceramic tiles made up a spectral database of size 312 megabytes. 
Nowadays, there are several conferences where new spectral imaging systems for industrial 
applications are presented (MCS, 2006; EI, 2006; IGARSS, 2006).  
When the client’s application is known in advance the data for it can be extracted from the 
original database. For example, in mineral mapping the spectral range from around 2.0μm
to 2.5μm is sufficient. Infrared systems utilize also a narrow band above the visual range for 
example in night time vision systems. If the colour features are enough, one can extract 30 
bands out of 224 from the AVIRIS images for that specific application. In all previous cases 
and for various client requirements, the high quality database or even the original database 
must be present for the data extraction. 
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As the imaging systems have developed, at the same time the resources for storing the 
images are advanced due to the technological changes. In Table 2 we show some 
development features in hard drive technologies and properties (Thompson & Best, 2000; 
Hughes, 2002; Grochowski & Halem, 2003; Moreiro, 2006).  

Feature 1970 1980 1990 2000 2009 

Density, Mb/cm2 1*100 5*101 3*102 4*104 5*105

Internal data rate, Mb/s 0.8 2 4 50 200 

Capacity, GB 0.03 0.3 1 100 1600 

Price, $/MB NA 200 8 0.05 <0.002 

Table 2. Advances in hard drive features. NA stands for information Not Available. 

A similar growth pace as for the hard disk drives is experienced also in digital transmission 
both in wired and wireless cases: in average, every fifteen years the capacities have become 
thousand-fold.
The spectral imaging systems produce a vector of values for each pixel of the image. The 
values depend on the resolution of the imaging system and they are normally presented as 8 
bit, 12 bit or 16 bit values. Thus, a spectral image can be considered as a set of two-
dimensional, equal size images. Now, compression methods can be similar to the methods 
applied to greyscale images or to RGB-colour images. For lossless compression also regular 
text compression methods can be applied. This simple approach may be usable, when a) the 
original image should be perfectly reconstructed, b) the compression method should be 
widely available, and c) high compression ratios are not required. These methods include 
entropy modelling followed by Huffman coding, arithmetic coding or Burrows-Wheeler 
transform. The standard Unix tool, gzip, is based on Lempel-Ziv coding (Ziv & Lempel, 
1977). It gives the average lossless compression ratio 1.41 for a set of four Moffet Field scenes 
and 1.39 for a set of five Jasper Ridge scenes from the AVIRIS dataset (AVIRIS, 2006). Much 
better lossless compression ratios are received if the composition of the spectral images is 
observed. Best lossless compression methods are most often based on predictive coding 
combined with entropy modeling (Aiazzi et al., 2002; Aiazzi et al., 2001; Aiazzi et al., 1999; 
Benazza-Benyahia et al., 2001; Mielikäinen & Toivanen, 2003; Mielikäinen, 2006). Also 
integer transforms (Kaarna, 2001) or lossless vector quantization (Ryan & Arnold, 1997-1) is 
possible for the perfect reconstruction. 
A lossy compression procedure for spectral images consists of three phases. The first phase 
decorrelates the raw data in spatial and spectral dimensions, the second phase quantizes the 
coefficients from the first phase. The third phase utilizes some lossless scheme to encode the 
quantized coefficients. This procedure is depicted in Fig. 1. 

Fig. 1. The three phases in the lossy compression. 
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A compression procedure is of any practical interest only if it has an inverse procedure 
which reconstructs the original data or image. An inverse procedure includes the same 
phases as the compression procedure in Fig. 1, but they are processed in reverse order. First, 
the compressed data is decoded resulting in the quantized coefficients. Then the quantized 
coefficients are restored to their original values and these values compose the original data. 
In Fig. 2 the decompression, the inverse procedure for compression, is depicted. 

Fig. 2. Decompression, the inverse procedure for compression. 

Different methods and their parameter values are possible in the compression procedure. 
Depending on the selections the reconstructed data can be equal to the original data or some 
information can be lost. The methods and parameters are selected such that the important 
features of the image are present and the information lost can be regarded as an observation 
noise or otherwise irrelevant for the application. The evaluation of the quality of the 
reconstructed data is necessary when using lossy compression. The quality measurements 
are most often based on the pixelwise or bandwise difference between the original image 
and the reconstructed image resulting to logarithmic signal-to-noise ratio (Rabbani & Jones, 
1991). Specific measures for spectral images include both the percentage maximum absolute 
distortion measure (PMAD) (Ryan & Arnold, 1997-2; Ryan & Arnold, 1998) and the 
blockwise distortion measure for multispectral images BDMM (Kaarna & Parkkinen, 2002). 
PMAD guarantees that every value in the reconstructed image is within a maximum 
distance from the original value. The maximum distance is relative to the original value. 
BDMM correlates blockwise filtering of the original and the reconstructed image to the 
visual quality of the distorted images. 
In the following sections we introduce methods for lossy and lossless compression of 
spectral images. Then we describe how to evaluate the quality of reconstructed data in the 
lossy case. Finally, we show experimental results and evaluate different compression 
methods. 

2. Lossy compression of spectral images     

A comprehensive study on theoretic aspects of lossy source coding can be found from 
(Berger & Gibson, 1998). Data compression is thoroughly considered in (Donoho et al., 
1998). Both scalar and vector quantization is widely surveyed in (Gray & Neuhoff, 1998). 
The wavelet transform is described in detail in (Daubechies, 1992; Taubman & Marcellin, 
2002).
Lossy compression methods achieve remarkably higher compression ratios than lossless 
compression by neglecting some unessential data in the compression phase. Several lossy 
compression methods have been developed for the compression of spectral images. Some of 
them are two-dimensional methods applied separately to each band of the spectral image 
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(Abousleman et al., 1994), and some methods have been further enhanced from the two-
dimensional methods to be three-dimensional (Abousleman et al., 1997; Kaarna & Parkkinen 
1999). Most of the recent methods apply separate subtasks to the spectral and spatial 
dimensions due to their dissimilar characteristics (JPEG2000, 2006; Aware, 2006; Kaarna et 
al., 2000; Kaarna et al., 2006). 
A rough classification of the compression methods for the spectral images include the 
principal component analysis (PCA) for the decorrelation of the spectral data, the wavelet 
transform for the spatial compression of images, predictive methods applied simultaneously 
to the spectral and spatial dimensions of the image, and finally the vector quantization of 
the spectra in the image. Each of these methods can alone compress the image, but in 
practise, best compression results are obtained through combining these methods.  

2.1 Vector quantization 

Clustering is an unsupervised method to classify patterns in an image. Patterns within a 
cluster are more similar to eachother than they are to a pattern belonging to another cluster. 
Thus, a lossy compression method can be established on that notation: each member of a 
cluster are represented by the cluster center. The compressed data consists of cluster centers 
and an index image.  
Vector quantization utilizies the previous idea (Ryan & Arnold, 1997-1; Ryan & Arnold, 
1997-2). First, a decomposition of the image into a set of vectors is performed. With spectral 
images the decomposition naturally consists of the spectral vectors. Then a codebook is 
generated from a training set of vectors using an iterative algorithm. Finally, each spectral 
vector of the image is quantized to the closest vector in the codebook according to the 
selected distortion measure. The compressed data consists of a codebook and a set of indices 
to the codebook. One index is required for each spectrum of the image. 
The generalized Lloyd algorithm (GLA) tries to optimize the codebook C. The algoritmic 
presentation of the GLA is : 

Algorithm 1: 

Step 1:  Select the initial codebook C1, set m=1.
Step 2:  With the given codebook Cm perform one iteration to generate an improved 
 codebook Cm+1.
Step 3:  Compute the average distortions for Cm+1. If the change from the previous iteration 
 is small enough, then stop. 
         Otherwise set m = m+1 and continue from Step 2. 
The Step 2 of Algorithm 1 is generally implemented using a Nearest Neighbor condition: 
Algorithm 2: 
Step 1:  Using the codebook Cm = yi partition the training set T into clusters Ri with the NN 
 condition: Ri= { x ∈ T : d(x,yi)  d(x,yj);  all j  i }.
Step 2:  Compute the centroids for the clusters {cent(Ri)} to obtain an improved codebook 

Cm+1 = {cent(Ri)} .  

In vector quantization each vector is represented by the centroid of a cluster it belongs to. 
The resulted data from the VQ consists of the cluster centroids and of an index image, which 
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describes the inclusion of each vector into one cluster. In Fig. 3. we illustrate the vector 
quantization for the compression of spectral images. 

Fig. 3. Vector quantization in lossy compression of spectral images. 

Similar approach to vector quantization was defined in (Toivanen et al., 1999). The 
procedure produced an index image and a codebook which was generated with a Self-
Organizing Map (SOM). The results were good compared to a clustering method in (Kaarna 
et al., 1998).
Even though vector quantization is theoretically optimal in lossy coding, the 
implementation issues constrain the performance (Poggi & Ragozini, 2002). Computational 
complexity and memory requirements have been the main drawbacks that have been 
attacked (Poggi & Ragozini, 2002;  Kaarna et al., 2000; Ryan & Arnold, 1997-2; Kamano et al., 
2001).
A tree-structured product-codebook was designed to support progressive transmission 
(Poggi & Ragozini, 2002). In product-codebook VQ, all codewords are of type xij = ui * vj,
where * is the decomposition rule. The component codebooks were organized in a tree-
structure in order to speed up the codeword selection. The optimal design of the 
components codebooks is a complex task, but a suboptimal solution clearly lowered the 
computational requirements. A tree-structure was also applied in (Kaarna et al., 2000) to 
accelarate the look-up functions in clustering. The leaves of the tree consisted of short linear 
lists and the search operation combined both the tree-structured and linear look-up 
functions.
An important feature in vector quantization is how to define an appropriate distortion 
measure for two vectors (Ryan & Arnold, 1997-2). The Euclidian distance between the two 
vectors X and Y is defined as  
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where xi and yi are components of vectors X and Y, respectively. A drawback for the 
Euclidian distance is that it doesn't account for the various shapes of the vectors. The PMAD 
distortion measure was developed to guarantee that every pixel B’(s1,s2, ) of the compressed 
and reconstructed image is within a maximum distance of p*100% from its original value 
B(s1,s2, ), i.e. (1-p)B(s1,s2, ) < B’(s1,s2, ) < (1+p)B(s1,s2, ). Using this distortion measure, lossy 
compression ratios cr up to cr=17 were received with airborne multispectral images.  



Compression of Spectral Images 275

One large codebook can be replaced with two codebooks (Kamano et al., 2001). The first one, 
a relative small codebook, with few training sets was generated. The second codebook was 
generated from the residual data between the original image and the first codebook output. 
The proposed scheme improved the coding efficiency and reduced the transmission rate 
according to the numerical experiments. 

2.2 Spectral decorrelation with PCA 

In image compression, the principal component analysis (PCA) produces optimal results in 
the sense of the mean-square error reconstruction (Karhunen & Joutsensalo, 1995). 
The principal component analysis is based on the covariance matrix C= E[(x-μ)(x-μ)T], μ= 
E[x] of the original data. In practical calculations the matrix C is replaced by an estimated 
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where xi is a sample vector and μ* is the estimated mean vector of the sample set. The sum is 
over all the n samples of the set. From the estimated  the eigenvalues 1, 2, ..., n and the 
respective eigenvectors u1, u2, ..., un are calculated. Due to the properties of the autocorrelation 
matrix, the eigenvalues i , i=1,n are all real and nonnegative. 
As soon as the eigenvalues i are known and without loss of generality the indexing is such 
that 1 > 2 > ... > n , the reconstruction x* of x is obtained as  
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where p, p < n is selected such that the required quality in reconstruction will be achieved. In 
Fig.  4 the principle of the PCA compression of spectral images is shown.  

Fig. 4. The PCA in lossy compression of spectral images. In this example, the number p of 
eigenimages/eigenvectors is p=4.

2.3 Transform coding

Function transforms have been used for centuries to solve problems i.e. in mathematics, 
physics and engineering (Zayed, 1996). For example, in audio signal processing it would be 
interesting to know what frequencies are included in the measured signal. This problem can 
be solved using the Fourier transform.  
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In general, a transform is a mathematical operation where a function or data f in domain u is 
transformed into another function or data F in domain U: f  F. The purpose of the 
transform is normally one of the following: 
• After the transform it would be easier to solve the original problem. 
• The transformed data gives a new insight to the problem at hand. 
• The data in the domain F(U) is measured experimentally and the function f needs to be 

constructed from this data. 
The transforms f  F of any practical value has an inverse transform, where the original 
function f is completely constructed from F, i.e.  F  f. Thus, the transform pair is used to 
solve the original problem using data F in domain U, and then the solution is transformed 
back to the data f in domain u.
A popular transform in engineering is the Fourier transform. The transform was developed 
by Joseph Fourier in 1822 as he demonstrated, that most signals of practical interest can be 
expanded into a series of sinusoidal functions. Later on, this continuos transform has been 
developed to be applicable in discrete computations (Proakis & Manolakis, 1994). 
The wavelet transform fw of a function f(t) also provides a time-frequency localization (Chui, 
1992; Daubechies, 1988; Daubechies, 1992; Mallat, 1998; Vetterli & Kova evi , 1995) as  

dt
a
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where  is called a mother wavelet with zero average,  (t)dt = 0. The mother wavelet (t)
is defined as a double-indexed function as  
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Practical applications, like the signal compression, require fast implementations. In signal 
processing community, the wavelet transform is implemented with convolution as an 
filtering operation and the conjugate mirror filters are used as filter banks. The orthogonal 
wavelet transform is implemented by the cascading conjugate mirror filters. The perfect 
reconstruction is achieved with this implementation. The orthonormal bases of wavelets can 
be constructed using multiresolution analysis. 
The fast discrete wavelet transform is computed using perfect reconstruction filter banks. 
Vetterli showed (Vetterli, 1986), that perfect reconstruction was always possible using FIR-
filters. The multiresolution approximation lead to two discrete, finite length filters, and, 
thus, a filter bank was a solution to a fast implementation. 
Using the definition 
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where φ(t) a is the scaling function, and due to the properties of multiresolution, {φ(t-n)}n ∈ Z

is orthonormal, then 
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The approximation aj+1 in the next coarser level of the multiresolution is obtained by 
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and the difference dj+1 between the two levels by 
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where g[n] is defined using the discrete filter h[n] as 
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At the reconstruction of the data the coefficients are obtained as 
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and finally, the discrete values fd of the original function are recovered from 
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Since the scaling and the wavelet filters h ang g are finite, the infinite sums in Eqs. 8-12 are 
computed using the convolution. The discrete wavelet transform is illustrated in Fig. 5: part 
a) shows the transform and part b) the inverse transform. 

   

a)

b)

Fig. 5. The discrete wavelet transform: a) the transform, b) the inverse transform. 

The transform coefficients are the values of aj+N and dj+i, i=1,...,N. Downsampling by two (↓2)
is performed in the transform and upsampling by two (↑2) in the inverse transform. In 
practice, Eq. 12 is not used and the values for a0 are obtained directly as discretized values 
f[n] of f(t). Due to the perfect reconstruction property, the inverse transform returns the 
discretized values f[n] directly as coefficients a0.
The orthogonal, compactly supported wavelets described above has several enhancements. 
They include biorthogonal wavelets (Cohen et al., 1992), which allow symmetric wavelets. 
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This was a result of a modification in the multiresolution approximation. Another 
modification in the multiresolution lead to the wavelet packet analysis (Coifman & 
Wickerhauser, 1992). Wavelet packets are described as a full transform of the coefficients. 
Since in the original transform only the coefficients aj are transformed, see Fig. 5, then in the 
wavelet packet analysis also the coefficients dj are transformed in a similar way. 

2.4 Linear and non-linear compression 

The principal component analysis (PCA) is a widely used statistical technique in pattern 
recognition, image processing, and signal processing. PCA is an optimal solution in 
minimization of the mean-square representation error E{||x – x*||2} where the data x is 
approximated using a lower dimensional linear subspace x* (Karhunen & Joutsensalo, 1995). 
The principal component analysis provides orthonormal basis functions that optimally 
decorrelate the data. Other methods, like DCT or wavelets, approximate this optimal 
decorrelation. The justification for the wavelet transform in signal compression comes from 
the nonlinear approximation (Daubechies, 1998; Donoho et al., 1998; Devore et al., 1992), 
where the linear combination of N basis functions is used instead of the first N basis 
functions. In the linear approximation, the space Sn spanned by the first N basis functions Φn

is
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n
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and in the nonlinear approximation the space Sn is  
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n
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In nonlinear approximation the wavelet coefficients are ordered according to their 
significance and the most significant coefficients and their addressing are included in the bit 
stream. 

2.5 Nonlinear compression through the three-dimensional wavelet transform 

In two-dimensional case the construction of the wavelet transform starts from a tensor 
product of two one-dimensional multiresolution analyses (Daubechies, 1992; Mallat, 1989),  
V0 = V0 ⊗ V0, where Vj, j ∈ Z is a multiresolution of L2(R). The multiresolution ladder is 
similar to that of one-dimensional case,, and now the multiresolution is  
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and the product
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is an orthonormal basis for V0. The basis for Vj is obtained (Mallat, 1998) as  
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The orthogonal complement in Vj-1 for Vj is Wj
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and, thus,  Wj consists of three parts, whose bases Ψ are combinations of one-dimensional 
scaling function φ and wavelet function :
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The set { Ψλ
j,n; j ∈ Z, n ∈ Z2, λ =h,v,d } is an orthonormal basis for L2(R2) (Daubechies, 1992). 

In this construction the sampling is done separately in vertical and horizontal directions, but 
the wavelet bases are nonseparable. 
The fast two-dimensional wavelet transform is performed using filtering operations on 
vertical and horizontal dimensions of the image. The original image is filtered into 
quadrants and then the approximation quadrant is filtered further on. If the size of the 
original image in N * N then each quadrant is of size N/2 *N/2. The transform has the perfect 
reconstruction property. 
Similar approach as in the two-dimensional case gives the three-dimensional wavelets that 
are applied to the three-dimensional data like spectral images.  If the separation of the 
spectral dimension is not applied, then the multiresolution analysis gives the configuration 
for the transform  as 
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The scaling function for the basis V0 is 

Znnnnxnxnxxxxnnn ∈−−−=Φ 321332211321,,,0 ,,),()()(),,(
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and the filtering of the spectral image is done using one scaling function and seven 
wavelets, which are defined as 
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where all dimensions are dilated similarly and the sampling is done separately along each 
dimension of the three-dimensional image. The original spectral image of size N * N * N is 
filtered into octants of size N/2 * N/2 * N/2 as illustrated in Fig. 6. 

a)

b)

Fig. 6. Three-dimensional wavelet transform applied twice. a) The principle of the 
transform, the coefficients a come from the low-pass filtering and the coefficients d from the 
high-pass filtering. b) Three-dimensional transform applied to one Bristol-image (Parraga et 
al., 1998). 
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Similar procedure will produce wavelets in higher dimensions than three. A theorem says 
(Mallat, 1998) that the family obtained by dilating and translating the 2p-1 wavelets for α≠0
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is an orthonormal basis for L2(Rp). The configuration of the three-dimensional transform in 
Eqs. 20, 21, and 22 is compatible with this theorem. 
The multiwavelet based transform is slightly more complicated due to preprocessing, 
computations, and housekeeping (Kaarna & Parkkinen, 1999). This transform has similar 
variants as the scalar case above. The multiwavelet transform with two scaling functions 
compatible with Eq. 22, Fig. 6 would contain the coefficients of the first scaling function in 
the front part of each cubic block and the coefficients from the second scaling function in the 
back part of each cubic block. The similar division applies to the coefficients from the two 
wavelet functions. 

2.6 Linear compression through spectral decorrelation and spatial compression 

A reference method for image compression is based on the principal component analysis 
(PCA) as a spectral decorrelation method combined with a two-dimensional transform as 
the spatial compression method. Both the discrete cosine transform (Rabbani & Jones, 1991) 
and the wavelet transform are used as the spatial compression methods (Kaarna & 
Parkkinen, 2001). Also the discrete cosine transform has been enhanced to the hyperspectral 
images (Abousleman et al., 1995).  
In Fig. 7 we illustrate the compression method, where the spectral decorrelation by PCA is 
followed the spatial wavelet transform. 

Fig. 7. PCA and the 2D wavelet transform in the lossy compression of spectral images. 

The new image compression standard, JPEG2000 was basically defined only for colour 
images, but the Part 2, extensions, includes also transforms for multiple component imagery 
(Taubman & Marcellin, 2002). The linear block transform can be considered as a matrix 
multiplication as described in Section 2.2 as the PCA transform.  The multiplication has an 
inverse operation and, thus, the data can be reconstructed. Also the wavelet transform is 
defined suitable for a point transform in JPEG2000. The work is currently underway, so the 
exact definitions are open (Taubman & Marcellin, 2002; JPEG2000, 2006).  
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2.7 Encoding in the Lossy Compression 

The encoding phase of the compression is accomplished in a lossless manner, see Fig. 1. In 
encoding the quantized coefficients are coded to minimize the amount of data to be stored 
or transmitted. In addition, the new representation should contain the same information as 
the original data. In decoding the new representation is coded back to the original data. The 
encoding methods are divided into statistical methods and dictionary methods. In statistical 
methods, like static Huffman coding and arithmetic coding, the probabilities of the source 
symbols are required and two passes of the source are needed for encoding. In dictionary 
based methods, adaptive methods like the Ziv-Lempel-algorithms LZ77 and LZ78, only one 
pass is sufficient for encoding (Lelewer & Hirschberg, 1987; Ziv & Lempel, 1977;  Ziv & 
Lempel, 1978). 
In LZ77 (Ziv & Lempel, 1977), the source characters were encoded using a window of length 
N. The first N-F source symbols were already encoded and the last F source symbols 
constituted a lookahead buffer. The next source symbols in the lookahead buffer F were 
encoded by searching the longest match from the N-F source symbols in the window N. The 
match was coded using a pointer and the length of the match. In decoding, no search was 
needed, since the data was copied  from the pointer position (Lelewer & Hirschberg, 1987; 
Ziv & Lempel, 1977). A modification to the previous method is the LZ78-encoding (Ziv & 
Lempel, 1978; Bell et al., 1989). Now the source symbols seen so far are split into phrases, 
where each phrase is the longest matching phrase seen so far plus one source symbol. Each 
phrase is coded as an index to its prefix plus the extra symbol. The new phrase is also added 
to the list of phrases that may be referenced.  After the introduction of the original LZ-
methods, there have appeared several enhancements and modifications to these methods, 
see e.g. (Bell et al., 1989; Lelewer & Hirschberg, 1987). 
In arithmetic coding the source symbols are coded to a magnitude in range [0,1) (Langdon, 
1984; Rissanen & Langdon, 1979). Initially, the range was split by the probabilities of single 
source symbols. New source symbols split the existing subranges in a similar way. Finally, 
all source symbols were manipulated and the subranges gave the codes. The encoding 
carried the prefix property. In decoding, the model of the source used by the encoder must 
be known. The encoded value was compared to the known probabilities in range [0, 1), then 
in the subranges, and finally the decoder output the original source symbols.  
SPIHT (Said & Pearlman, 1995) is an effective wavelet-based compression method for two-
dimensional images. Color images are compressed through applying the method in each R, 
G, and B-band separately. For spectral images this approach has been extended to 
simultaneously manipulate all the bands of the spectral image (Dragotti et al., 2000).  The 
approach combines the wavelet transform with the coding of the selected wavelet 
coefficients. The wavelet coefficients are coded using a hierarchical tree structure. In Fig. 8, 
the two-dimensional tree structure is depicted. In the three-dimensional case the structure is 
extended to include also the spectral dimension. Then the two-dimensional “squares” of 
coefficients become three-dimensional “cubics”. The extension is analogious to that depicted 
in Fig. 6 for the wavelet transform.   
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Fig. 8. The tree structure in 2D SPIHT. 

2.8 Results from lossy compression 

In the experiments we applied the integer PCA and wavelet transform to four AVIRIS 
images: Jasper Ridge, Moffet Field, Lunar Lake, and Cuprite (AVIRIS, 2006). The spatial size 
of each image was 608*512 and the number of bands was 224. The resolution of the original 
images was 16 bits. Thus, each image occupied 139,460,608 bytes of disk space in the raw 
form. Band 200 from Moffet Field image is displayed in Fig. 9. 

Fig. 9. Spectral band 200 from Moffet Field AVIRIS image. 

In Fig. 10 the results from the PCA decorrelation with the 2D wavelet tranform are shown, 
see Fig 7. With PCA, the variable-bit-rate approach was also applied: the bit-allocation 
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between the eigenimages was entropy-based (Kaarna et al., 2006).  The results from the 3D 
wavelet transform are also included, see Fig. 6.  The horizontal axis is the compression ratio 
(CR) and the reconstruction quality as PSNR in dB (Eq. 28) is in the vertical axis. 
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Fig. 10. Results from the lossy compression of AVIRIS spectral images. In PCA, p=5 (Eq. 3). 

3. Lossless compression of spectral images    

The lossless compression is also called image coding when all the information in the image 
is included in the bit stream and the representation of the information is changed into a 
more compact form. In lossless compression of the spectral images the methods described in 
Section 2.7 can be used, since they are universal coding approaches for any digital 
information. These entropy-based textual coding approaches produced compression ratios 
from 1.5 to 2.0 for a set of AVIRIS-images (Kaarna & Parkkinen, 2001). 
For spectral images, the lossless compression can be done by vector quantization and 
arithmetic coding (Ryan & Arnold, 1997-1). First, the vector quantization is applied to the 
spectra of the image; second, the residual image is created and then it is coded using 
arithmetic coding. The residual image contains only integer values obtained after rounding 
the difference between the closest vector center and the original spectral values. In addition, 
addresses from vector quantization and a set of other parameters are stored as side 
information. Also other lossless coding methods exist, e.g. they are based on band ordering 
(Tate, 1997; Toivanen et al., 2005) or spectral and spatial noncausal prediction (Memon et al., 
1994).  Thus, in the lossless compression of spectral images better results are achieved 
through the transform coding and especially, with the predictive coding.
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3.1 Transform coding in lossless compression of spectral images 

We applied the principal component analysis (PCA) to define the approximation image 
(Kaarna, 2001). PCA will produce a set of base vectors, which minimize the approximation 
error in the L2-sense. The problem of heavy computations in PCA is solved by selecting only 
a small number of spectra from the image for the calculation of the base vectors. Also an 
integer version of PCA is needed. The calculation of the eigenvalues and eigenvectors is 
done with floating values, but the double precision results from the analysis are transformed  
to integer values such, that the required number of correct digits is maintained in the reverse 
transform. The PCA transform was described in Section 2.2. 
Since the approximation image is available, then the residual image can be calculated. The 
residual image is then further compressed with the integer wavelet transform. Reversible 
integer-to-integer wavelet transforms have shown good performance in lossless colour and 
grey-scale image coding (Adams & Kossentini, 2000). The integer wavelet transform is based 
on the lifting scheme: different filters were derived by combining the prediction step with 
the update step (Calderbank et al., 1998). The integer wavelet transform is one-dimensional 
in nature. In the two-dimensional case, the one-dimensional transform is applied to the rows 
and columns of the image. In the three-dimensional case, the one-dimensional transform is 
applied to the spatial and spectral domains separately. The approach is the same as in the 
general case, see Fig. 8.  
Similarly to the floating case, there exists different integer wavelet transforms (Adams & 
Kossentini, 2000; Calderbank et al., 1998; Daubechies, 1998). The oldest form of the integer 
wavelet transform subtracts the even samples from the odd samples to get the difference d1

and the new approximation a1 as 
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where the original data is stored in a0. The second subscript refers to the index of the sample 
vector. The exact reconstruction comes from calculating the values in reverse order as 
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In general, the integer wavelet transform consists of the prediction and of the update based 
on the lifting where the number of vanishing moments is increased. In (Adams & 
Kossentini, 2000), the best lossless compression results for grey-scale images were obtained 
with the 5/3-transform, the forward 5/3-transform is defined as 
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where a0 refers to the even samples and d0 to the odd samples of the original signal. We 
implemented also other integer wavelet transforms, but the final results were calculated 
with the 5/3-transform. 
The zero order entropies of the AVIRIS test images, see section 2.8, are tabulated in Table 3, 
column ento. The test images were compressed with the lossless Burrows-Wheeler algorithm 
(Nelson, 1996) and the bitrates are in Table 3, the second column (Bit-rate). The compression 
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results with the integer PCA and wavelet approach are shown also in Table 3 (Kaarna, 2001). 
The compression ratio (CR) is a ratio between the size of the original file size and the size of 
file containing the encoded image. The bitrate is calculated as 16 bits/sample divided by the 
compression ratio (column Bit-rate). The zero order entropy of the residual image is 
tabulated before (entb) and after (enta) the integer wavelet transform. Also, the entropy of all 
encoded data is tabulated (entf). All entropies are expressed as bits/sample. The last column 
(ratio) contains the compression ratio as the ratio between the original entropy and the 
entropy of all encoded data (entf).

Image ento
Bit-
rate entb enta entf CR Bit-

rate ratio 

Jasper 11.19 7.94 6.14 5.24 5.62 2.83 5.65 1.99 

Moffet 11.55 8.11 6.38 5.36 5.74 2.79 5.73 2.01 

Lunar Lake 12.17 7.07 5.84 5.14 5.50 2.79 5.73 2.21 

Cuprite 12.07 7.29 6.12 5.15 5.51 2.90 5.52 2.19 

Table 3. Entropies and actual compression ratios for the four test images. 

Our test images were from the AVIRIS free data set. They were measured in 1997 and most 
of the comparative results were calculated using older AVIRIS data sets. Thus, the 
comparisons will give only suggestions on the coding properties of our method. The results 
from (Ryan & Arnold, 1997-1) are collected in Table 4. 

Image Original 
entropy 

Final
entropy ratio 

Jasper 9.79 5.73 1.71 

Moffet 9.64 5.63 1.71 

Table 4. Results from (Ryan & Arnold, 1997-1). 

In (Tate, 1997) the actual compression ratio for the data from a single AVIRIS image was 
3.53. In (Memon, et al., 1994) the entropy of the residual of Cuprite image ranged from 5.48 
to 5.61 bits/sample. 

3.2 Predictive coding in lossless compression of spectral images

In (Mielikäinen et al., 2002; Mielikäinen et al., 2003) an interband version of predictive 
coding is presented. Linear prediction is one of the best performing image coding 
techniques. The least squares estimation approach defines the prediction coefficients from 
the causal set. An estimate p’x,y,z for the current pixel px,y,z at location x,y,z is calculated as 
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where ai,j,k is a prediction coefficient of the pixel at location i,j,k. O is the number of bands 
and T is the number of rows in the causal set. The Lj,k and Rj,k are the delimiters in spatial 
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and spectral dimensions for the causal set. These definitions lead to matrix operations and 
finally to the causal estimates of the pixel. Since the coefficients ai,j,k  are known the estimate 
of the pixel px,y,z is defined. The causal set was structured from the spatial and spectral 
dimensions. In the experiments a small causal set with prediction only from the previous 
band proved to give the best results. Also the heuristic for prediction was considered, some 
bands were not predicted but entropy coded without prediction. This enhancement further 
added the coding performance. The results presented outperformed the results found from 
the literature. 
In Table 5 the average results for AVIRIS images are collected (Mielikäinen et al., 2003). 
They used the same image data as shown in Table 3. The table contains also reference results 
from vector quantization (VQ), enhanced principal component analysis with integer 
wavelets (PCA, see Table 3), the discrete cosine transform (DCT) and finally the results from 
the methods presented in (Mielikäinen et al., 2003), the prediction and the adaptive 
prediction (Pred/1, A&P/3). 

Image VQ PCA DCT Pred/1 A&P/3 

4 test images 3.06 3.03 2.72 3.14 3.23 

Table 5. Results from (Mielikäinen et al., 2003). 

A general conclusion from the previous is that the prediction methods work best in spectral 
image coding. The transform methods are more suitable for lossy compression. 

4. Quality in lossy compression 

The quality of the lossy compressed/reconstructed image is hard to evaluate. The error 
measures used in the lossy compression of the spectral images are similar to those used in 
the compression of the grey-scale or RGB-colour images: the error is evaluated using mean-
square-error based quantitative measures like root-mean-square error, signal-to-noise ratio 
(SNR) or peak-signal-to-noise ratio (PSNR).  All of these measures are computed pixelwise 
and thus, they show limited correlation with the human visual system. For example, the 
PSNR error remains the same, even though the relative error becomes large. This relative 
error is important in perceptual measures, since the human visual system notices the 
intensity variation in grey area better than in dark or bright area (Li et al., 1999). 
 Qualitative measures are becoming more important, web-based applications like e-
commerce will require images with high visual quality.  

4.1 Energy-based quality measures 

For grey-level images the signal-to-noise ratio (SNR) and the peak-signal-to-noise ratio 
(PSNR) can be defined as  
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where s is the peak value of the image, normally s = 28-1 = 255, Eo is the energy of the 
original image, Ecr is the energy of the compressed/reconstructed image, and N2 is the 
number of pixels in the image (Rabbani & Jones, 1991). 
These measures have some advantages and some drawbacks.  Both of the measures are 
computed pixel-wise and thus, they show poor correlation with human visual perception. 
One of the advantages is that these measures can be computed fast: the amount of 
computations needed is linearly dependent on the size of the spectral image, i.e. O(n), where 
n = N*N*M, and N is the number of pixels in each spatial dimension and M is the number of 
the spectral bands. Also, any type of images can be used with this measure: greyscale, 
colour, or spectral images. The PSNR has a constant energy Eo for the images of equal size 
and thus it provides an absolute measure for the error. For example, if in one pixel image 
with the resolution of 8 bits, the pixel values are xio=5, and xicr=3, then PSNR=42.1dB. If a 
similar error, two units, is in the range closer to the peak value, like xio=251 and xicr=249, the 
PSNR remains the same, PSNR=42.1dB. Thus the PSNR does not notice the locations of the 
equal size errors in the intensities of the samples. These locations are important in 
perceptual measures, since the eyes notice the intensity variation in the grey area better than 
in the dark or in the bright areas (Li et al., 1999). Despite of this, the PSNR is widely used 
measure due to the absolute nature. The SNR measure uses energy Eo which is dependent 
on the values of the image, so the measure is a proportional measure. In the similar case as 
previously, the SNR measure has different values depending on the range of the pixel 
values. For example, if xio=5, and xicr=3 in a 8 bit resolution image, then SNR=8.0dB. If 
xio=251 and xicr=249, then SNR=42.0dB.  For this reason, the SNR values cannot be compared 
between different sets of images without normalization.  

4.2 Content difference-based quality measures 

For the spectral image compression a quantitative measure based on the percentage 
maximum absolute distortion (PMAD) is developed (Ryan & Arnold, 1997-2). The PMAD is 
measured as a distance between each pixel from the original image and the reconstructed 
image and it guarantees, that every distance is below p*100% of the original pixel value. The 
measure showed predictable behaviour as the compression ratio increased and vice versa. 
The quality of the compression/reconstruction can be predicted, if the compression ratio is 
known in advance. The details of PMAD were already described in Section 2.1. 

Similarly to PMAD, quality controlled compression methods were developed for near-
lossless compression (Aiazzi et al., 2001). The data used was optical data, either pancromatic 
2D data or hyperspectral 3D data. Also, psychophysically derived quantization in wavelet 
based compression has been considered (Ferguson & Allinson, 2002). Their method 
minimizes distortions and provides smooth perceived degradation for compressed images. 
Again, colour images were used in the experiments. 
The pixel-wise error measures are good for random errors but not for structured or 
correlated errors (Franti, 1999; Miyahara et al., 1998; Nakauchi et al, 1998). Typical 
compression artefacts include blockiness, blurring, and jaggedness of the edges and they 
require spatial consideration, which is based on the original pixel values. 
A sliding cube of size 3x3x3 was used to process the spectral image and three components 
were computed for each pixel: the contrast, the spatial and the spectral structure, and the 
number of different grey-levels (Kaarna & Parkkinen, 2002). The contrast measures how 
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each pixel differs from the background. The spatial structure, or the edges, of the image are 
blurred or jagged in the compression. The number of different grey-levels in a block 
measures blockiness (Eskicioglu & Fisher, 1995; Franti, 1999; Miyahara et al., 1998). The final 
measure, the Blockwise Distortion Measure for Multispectral images (BDMM), was 
calculated using these three components from the original image and from the 
compressed/reconstructed image. The matching of the BDMM to the visual tests was done 
with a neural network. 
The contrast is a local change in brightness and it is computed using standard deviation 
(Sonka et al., 1993). The first error component, the contrast error ec for a block was computed 
using the difference of the standard deviations for the blocks from the original and the 
compressed/reconstructed image (Kaarna & Parkkinen, 2002). The spatial and spectral 
structure is the response to edge detection operations in a block (Sonka et al., 1993). For a 
three-dimensional 3x3x3 block the three edge detectors Gi, i=x,y,z were filtering operations 
adopted from Laplacian edge-detectors by modifying the two-dimensional detectors to 
three-dimensional ones. The second error component, the error es in the spatial structure 
was a sum of all the edge-detection operations normalized with the contrast value of the 
block (Kaarna & Parkkinen, 2002). The third error component, the quantization error eq was 
based on the number of different grey-levels in a block, both from the original image and 
from the compressed/reconstructed image. The total errors Ec , Es , and Eq between the 
original and reconstructed images were received by computing the average values of the 
blockwise errors ec , es , and eq  over the entire images (Kaarna & Parkkinen, 2002). 
The matching between the computed values of the distortion measure BDMM and the 
visual tests was obtained using a multi-layer perceptron with back-propagation (Kaarna & 
Parkkinen, 2002). The problem is a curve-fitting problem with three input variables Ec , Es , 
and Eq  and the goal received from the visual tests V, BDMM = f(Ec , Es , Eq ,V).  The function 
f was modelled by a three-layer neural network with 6 neurons in the hidden layer and one 
neuron in the output layer.  The function f was obtained as the network weights and biases, 
which are then used to compute the BDMM for all images used in the experiments. 
In the experiments three spectral images were used, AISA, AVIRIS, and BRISTOL. Each 
image was of size 256x256 pixels and they had 32 spectral bands. The spectral range of the 
AISA (Airborne Imaging Spectrometer for Applications) was from 649 to 747 nm (Aisa, 
2006). Our test image contains mainly vegetation. For AVIRIS-image, 32 channels from 1 to 
218 by step 7 were selected. Thus, the spectral range is from 370nm to 2450nm. The image is 
part of one of the Moffet field-images (AVIRIS, 2006). The BRISTOL-image is taken in 
laboratory conditions from a flower leaf using the visible spectral range from 400 nm to 700 
nm (Parraga et al., 1998). 
In the experiments three methods were applied to compress the three test images.  The 
three-dimensional wavelet transform with multi-wavelet kernel, the PCA spectral 
compression and the two-dimensional DCT/JPEG compression were applied. The 
multispectral images were compressed with several compression ratios and their visual 
quality was assessed by 18 subjects. After the matching the correlation coefficients for the 
three different images were computed: for AISA, 0.9911; for AVIRIS, 0.9836; and for 
BRISTOL, 0.9943.  In Fig. 10 we visualize the correlation of the visual grading and the results 
from the filtering operations after matching.  
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Fig. 10. Visual grading versus filtering operations after matching. 

4.3 Spectral–based quality measures 

In classification problems, for example in detection of minerals, classification of fields or in 
environmental monitoring, it is important to find exact matches between two spectra. Thus, 
comparison of data in vector format is required. Normally, the difference between two 
vectors is defined using the Euclidean distance (Kaarna et al., 2006).  
The Euclidean distance de, defined in Eq. 1, measures only the difference in magnitudes 
between the two spectra and it doesn't observe the shape of spectra. The Euclidean distance 
is zero for two equal spectra and large values mean large differences in magnitudes of 
spectra.
Similar vectors have identical magnitudes and directions. The Spectral Similarity Value 
(SSV) includes these two metrics (Granahan & Sweet, 2001). SSV was defined as 

2
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For Eq. 29, the modified Euclidean distance was defined and the factor 1/n was inserted 
under the square root. n is the number of spectral bands in the hyperspectral image. Because 
a metric, whose large values meant dissimilar vectors, was needed, the coefficient r12 was 
defined as r1= 1 – r2, where r is the correlation between the vectors x and y
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where μx and μy are the mean values for vectors x and y. Respectively, σx and σx are standard 
deviations for vectors x and y. The range of r is between zero and one.  SSV is zero for 
identical vectors and larger values mean more dissimilar spectra. 
Spectral Angle Mapper (SAM) (Chang, 2000) calculates the angle between two spectra. The 
SAM only measures the shape of two spectra and it doesn't observe the difference in 
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magnitudes. The SAM value is zero for similar spectra and larger for more dissimilar 
spectra. The Spectral Angle Mapper value was defined as  
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In the experiments the Euclidean distance, SSV and SAM were used for spectral matching 
after the original image was clustered into groups. The vectors of the original image were 
matched to the cluster centres and the spectral matching was applied also to the vectors of a 
compressed image. After that the results were compared. In optimum all pixels should have 
gone to the same clusters in both cases. However, the information loss in the lossy 
compression normally results in classification inaccuracies, which are lower than 100%. 
Classification accuracy was used to measure the image quality of a compressed image.  
The Euclidian distance performed similarly with the two test images. SSV was more 
vulnerable than SAM in compression with the image with higher standard deviation. When 
the image contained larger spatial equi-value areas, the situation was vice versa. The 
approach of defining the spectral differences was reasonable but it still requires more 
research.

5. Conclusions 

In this section we have collected experiences when different spectral images were 
compressed in a lossy manner with various methods described in the previous sections. 
The following abbreviations are used: 
• CL-W: wavelet transform in the spectral reduction followed by clustering, 
• CL-P: PCA in the spectral reduction followed by clustering, 
• WT-3M: the three-dimensional wavelet transform, Chui-Lian multiwavelets (Chui & 

Lian, 1996), 
• WT-3H: the three-dimensional wavelet transform, Haar wavelet, 
• SP-P: PCA in the spectral reduction and SPIHT (Said & Pearlman, 1996) in the spatial 

dimensions, 
• JP2K-P: PCA in the spectral reduction and JPEG2000 (Taubman & Marcellin, 2002) in 

the spatial dimensions, 
• JPG-P: PCA in the spectral reduction and DCT/JPEG (Rabbani & Jones, 1991) in the 

spatial dimensions, 
• SP-O: SPIHT in the spatial dimensions, no spectral reduction, 
• JPG-O: DCT/JPEG in the spatial dimensions, no spectral reduction, 
• JP2K-O: JPEG2000 in the spatial dimensions, no spectral reduction. 
In earlier experiments (Kaarna et al., 2000), it was found, that PCA and wavelets performed 
best with clustering, and, thus, from the comparisons we leave out the other possible 
variations.
The last three methods provided trivial solutions to the compression of spectral images. 
These methods applied SPIHT, DCT/JPEG, or JPEG2000 to the spatial dimensions of the 
images without any compression in the spectral dimension. Thus, we could get some 
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indication of the spectral redundancy, and we could also compare the two-dimensional 
compression methods to each other. The wavelet based compression methods, like the set 
partitioning in hierarchical trees (SPIHT) and JPEG2000 are effective definitions and 
implementations of a two-dimensional wavelet compression technique. DCT/JPEG is not of 
as high quality, but there has been progress also with the discrete cosine transform 
(Ponomarenko et al., 2005). They have extended the original 8*8 block size to 32*32 block 
size and carefully considered the quantization of the DCT coefficients. 
In spectral image compression one has to consider the noise from the imaging system. The 
apparent noise is most often modelled as additive noise and there are automatic methods for 
removing this kind of noise resulting to high quality, noise free images (Ponomarenko et al., 
2006). In this case, if the image compression is lossless, one can consider the approach as 
near-lossless, the loss comes from removing the noise, not any part of the information. If the 
noise removal should be automatic, then the noise model should well match to the imaging 
system and the algorithms should be carefully designed and implemented. 
In the experiments we had totally 65 images from three data-sets, AISA, AVIRIS and 
BRISTOL, see section 4.2. Every image was compressed with the methods described above. 
All the experiments were performed in Matlab-environment.  
Comparison to the references in the literature is not straight-forward, since various images 
and quality measures have been used in different studies. Thus, similar exact CR/PSNR 
comparison results cannot be presented as are presented for the standard RGB colour 
images like Lena-image.  
In Tables 6 and 7 we give general comments on the compression methods described. The 
tables contain the summary of our experiments. In the tables a minus sign means that the 
approach has a bad property, doubled or tripled minus signs mean even worse property 
value. A plus sign means a positive property value. In Table 7, the compression quality is a 
combination of the compression ratio and the respective reconstruction quality. This general 
evaluation is based on the detailed errors included also in the table.  

Method Spectral compression complexity Independency of the 
eimage 

SP-O No - + 
JPG-O No - + 
JP2K-O No - + 

CL-P Yes - - - 
CL-W Yes - - 
SP-P Yes - - - 

JPG-P Yes - - - 
JP2K-P Yes - - - 
WT-3M Yes - - - + 
WT-3H Yes - - + 

Table 6. Summary of the experiments with different compression methods for spectral 
images, compression features. - means poor, + means good value of property, multiple 
symbols mean stronger emphasis. 
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Method Compression 
ratio 

Blocking
artefacts 

Ringing
artefacts 

Structural
errors 

Compression 
quality 

SP-O - - + - - + + + + 

JPG-O - - - - - - + - - - 

JP2K-O - - + - - + + + + 

CL-P + + - - + + + + 

CL-W + - - + + + - 

SP-P + + + + + - + + + + + + 

JPG-P + + - - + - - + 

JP2K-P + + + + + - + + + + + + 

WT-3M + + + - + + + 

WT-3H + + + - - + + 

Table 7. Summary from the experiments with different compression methods for spectral 
images, compression ratio and the quality of compression. - means poor, + means good 
value of property, multiple symbols mean stronger emphasis. 

Currently, the up-to-date system for the lossy compression of the spectral images contains 
the principal component analysis for the decorrelation of the spectral domain. Then this is 
followed by a two-dimensional transform for compression the eigenimages. Currently, the 
wavelet transform is the up-to-date choice for the two-dimensional compression. In the 
lossless case, the prediction based approaches produce the best coding results.  
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1. Introduction     

Automatic mapping of urban areas from aerial images is a challenging task for scientists and 
surveyors because of the complexity of urban scenes. The 2D image information can be 
converted into 3D points provided that aerial images have been acquired in a (multi-) 
stereoscopic context (Kasser & Egels, 2002). Altitudes are then processed using automatic 
correlation algorithms to generate Digital Surface Models (DSM) (Pierrot-Deseilligny & 
Paparoditis, 2005), (Baillard & Dissard, 2000). The DSM helps in the understanding of an 
urban scene, especially for the 3D building reconstruction problem. There are two main 
approaches to take to this problem: 
1. detecting 3D primitives (segments or planes) before making polyhedric building 

models (Jibrini & al, 2000),  
2. using a parametric model-based approach (Lafarge et al, 2006). 
This study aims to present a methodology for detecting building roof facets. These facets are 
meant to be integrated into an algorithm for building reconstruction. Many researches have 
been performed on this topic using DSMs as altimetric data. Nevertheless, in the last past 
years, airborne lidar systems (ALS) have become an alternative source for acquiring 
altimetric data (Baltsavias, 1999). These systems are based on the recording of the time-of-
flight distance between an emitted laser pulse and its response after a reflection on the 
ground. They provide sets of 3D irregularly distributed points, georeferenced with an 
integrated GPS/INS device. The accuracy (< 0,15 m in altimetry) and the robustness of such 
systems are better than photogrammetric derived DSMs. However, ALS do not provide 
textural information that can be exploited, as they are with optical aerial images.  
We therefore propose in this paper to use jointly calibrated aerial images and 3D lidar data 
to extract 3D roof facets. We built a joint image segmentation paradigm that includes 
radiometric, geometric and semantic properties of each data set. Very few researches have 
been performed on the fusion of lidar and aerial images and are mainly focused on image 
classification (Rottensteiner et al, 2004), (Haala & Walter, 1999). 
We will present in the first part the theoretical background of our methodology, especially 
the hierarchical segmentation framework. We will then show some results of 3D roof facet 
extraction.
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2. Methodology

2.1 Background 

A region is defined as a set of pixels sharing the same properties. Segmenting an image I in
n regions consists in determining a partition InΔ of I satisfying: 
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The segmentation problem may be considered under various points of views seeing that a 
unique and reliable partition does not exist. Beyond classical region growing algorithms, 
approaches based on a hierarchical representation of the scene retained our attention. These 
methodologies open the field of multi-scale descriptions of images (Guigues et al, 2003). 
Here, we are interested in obtaining an image partition whereon roof facets are clearly 
delineated and understandable as unique entities. 
A hierarchy is defined as a tree structure. It is a graph where nodes are related to image 
regions and edges (father-child relationships) to region subset inclusions. The root of the 
tree corresponds to the whole image and the leaves to the initial partition (over-
segmentation) of the image. An eligible partition onto a hierarchy (or a cut) is therefore a 
set of nodes which related leaf region sets are disjoint. Figure 1 sketches a cut in a hierarchy 
represented as a dendrogram as well as the corresponding partition. 

Fig. 1. Sketch of a cut in a hierarchy (dendrogram). Red circles are the selected cut nodes and 
correspond to the presented image partition. 

A data structure for representing an image partition is the Region Adjacency Graph (RAG). 
The RAG is defined as an undirected graph ),( VEG  where V  is the set of nodes related 

to an image region and E  the set of edges related to adjacency relationships between two 
neighbouring regions. Each edge E  is weighted by a cost function (or energy) that scores 
the dissimilarity between two adjacent regions. The general idea of a hierarchical ascendant 
segmentation is to merge sequentially the most ”similar” pair of regions (or the one that 
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minimises the cost function) until a single region remains. The fusion of these two regions 
(or the contraction of the RAG minimal edge) creates a node in the hierarchy and two father-
child relationships in case of a binary tree. Figure 2 sketches the generation process of the 
hierarchy from an initial partition of the image. 
ostfun 
tio

Fig. 2. Construction of a hierarchy based on a RAG (left).  

2.2 Theory 

The shape of the hierarchy (therefore the region merging order) constraints the existence of 
an eligible partition. In other words, initial regions that theoretically belong to a roof facet 
must be mutually merged until a node in the hierarchy appears as a roof facet entity. If it 
appears that sub-regions of a facet merge with adjacent regions that do no belong to their 
supporting facet, the embedded geometry is broken.  

2.2.1 The cost function 

The region merging order depends on the definition of the energy Ε  associated to each 
edge of the RAG.  We can write Ε  as a sum of three terms rΕ , lΕ  and sΕ  respectively 
related to the image radiometry, to the lidar geometry and to the semantic extracted from 
lidar data. 

rΕ  is defined to minimise the loss of information when describing the image from n  to n-1
regions. We retained the cost function given by Haris (Haris et al, 1998) for merging two 
neighbouring regions iR  and jR  : 
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Where
r

. is the number of pixels in each region and =
kr

kI
R

)(
1μ the average value 

of the radiometries at image sites k of the region. 
In our context, lΕ is defined to take advantage of both the accuracy and the regularity of 
lidar measurements onto roof surfaces to make appear in the hierarchy nodes corresponding 
to roof facet entities. It is therefore expected that image regions merge independently over 
each roof facet of the focused building. Higher levels of the hierarchy are not of interest in 
this study. The adequation of lidar points to lie on a roof facet is measured by estimating a 
plane onto those included in ji RR . A non robust least square estimator is applied 

specifically for neighbouring regions not to merge when the estimated plane is corrupted by 
non coplanar points. Such is the case when attempting to merge two regions apart from the 
roof top before other couples of regions belonging to the same roof facet with possible 

significant radiometric dissimilarities. If 
liN  (resp. 

ljN ) is the number of lidar points 

in region iR  (resp. jR )  and pr  the residuals of a laser point to the estimated plane, 2

lρ  is 

the average square distance of laser points to the estimated plane with  
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If we consider a similar weighting factor as for rΕ depending on the number of lidar points 

l
. in image regions, lΕ is expressed as: 

2),( l

ljli

ljli
jil NN

NN
RR ρ

+
=Ε

3D lidar points have been previously processed to extract a binary semantics: ground and 
off-ground points. Theoretically, the off-ground class includes building and vegetation. 
However, we will only consider the segmentation algorithm to be focused on buildings. The 
process is performed with a high level of relevancy over urban areas owing to the sharp 
slope breaking onto building edges (Bretar et al, 2004). An image region will be classified as 
ground if it contains at least one projected lidar ground point. Otherwise, the region is 
considered to be a built up area. This binary semantics provides a reliable ground mask that 
can be integrated into the initial segmentation. Two regions of different classes are kept 
disjoint until the highest levels of the hierarchy. Finally we can write 

∞
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2.2.2 The optimal eligible partition 

A roof facet is defined as a 3D planar polygon which average square distance to lidar 

support points ( 2

lρ ) is less than a threshold s. The final partition is obtained by recursively 

exploring the binary tree structure from its root comparing 2

lρ  of each node to s.

3. Results 

The test area is part of the inner city of Amiens, France. Aerial images (resolution 0,2m) are 
firstly re-projected into ortho-rectified geometry in order to avoid the segmentation of 
building facades. Using the original geometry of a set of calibrated aerial images is thought 
as future work. In order to enforce the region borders to lie on real discontinuities, we 
applied a contour detection algorithm (hysteresis thresholding) on the gradient image. The 
gradient was computed with a Canny-Deriche operator ( 1=α ) (Deriche, 1987). The 
watershed algorithm is finally applied on a combination of both images (maximum of 
gradient and contour images). Figure 3 sketches the flowchart of the entire methodology. 

gradient contours Max(gradients,contours)

WatershedLidar ground points

RAG

Hierarchical image segmentation

Set of embedded partitions

Eligible partition (cut)

3D facets

Initial image

Fig. 3. Flow chart of the algorithm 

We present in table 1 a set of embedded image partitions. Region contours are back-
projected onto the ortho-rectified image. Parameter s describes a partition set. Following s,
one can notice that structures progressively appear as unique entities until adjacent facets 
merge together. At the time of the study, s is tuned after a visual evaluation of each 
partition. Indeed, this threshold is highly related to the roof shape and is therefore different 
from one building to the other. We clearly see on these examples the delineation of the 
buildings with regard to ground regions as well as to courtyards. Isolated elementary 
regions remain within the large ground region due to the lack of lidar points inside them.  
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Table 1. Examples of partitions at different scales .White segments are the region borders. 

As for the building presented in table 1, we consider that a final eligible partitions is 
achieved for s=0,5m. Figure 4 shows the reconstructed 3D facets of this building. This 
reconstruction considers lidar points belonging to an image region larger than 30 pixels and 
which orientation is greater than 30° from vertical. The presented 3D scenes give a realistic 
representation of the buildings whereon hyper-structures such as dormer windows are 
particularly visible. There delineation could not have been obtained considering only lidar 
data due to their low spatial density. The high radiometric contrast of the aerial image over 
some of these structures is then real complementary information. The accuracy of lidar 
points gives also the opportunity to detect two neighbouring regions with a low orientation 
difference as two different facets. 
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Fig. 4. 3D views of facets estimated from lidar (red) points (same building as in table 1).  

Fig. 5. Result of the algorithm on a complex building.  

The 3D region contours are calculated from 2D region contours. In case of overlapping 
regions, the smallest one is extruded from the largest, which explains the general shape of 
the presented facets.   

 4. Conclusion

We have presented a methodology for extracting roof facets over buildings by merging 
aerial images and 3D lidar data in a hierarchical segmentation framework. Building roof 
facets are detected using radiometric, semantic and geometric information of images and of 
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lidar data. We have shown that integrating lidar points in an image segmentation process 
has enhanced the potentialities of using only 3D lidar points for extracting planar surfaces.  
The 3D facet contours are not accurate or realistic even if they are based on the image 
contours. This is mainly due to remaining small regions located at the region borders. 
Seeing that images have been resampled to fit the ortho-rectified geometry, facet contours 
do not take benefit of the original image geometry. The future work consists at first in using 
aerial images in their original geometry to avoid the resampling artefacts onto building 
borders. In a second step, we would like to derive global criteria to provide admissible 
range values of parameter s.
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1. Introduction     

In a society driven by visual information and with the drastic expansion of low-priced 
cameras, vision techniques are more and more considered and text recognition is nowadays 
a fast changing field, which is included in a large spectrum, named text understanding.  
Previously, text recognition was dealing with documents only; those which were acquired 
with flatbed, sheet-fed or mounted imaging devices. Recently, handheld scanners such as 
pen-scanners appeared to acquire small parts of text on a fairly planar surface such as that of 
a business card. Issues having an impact on image processing are limited to sensor noise, 
skewed documents and inherent degradations to the document itself. Based on this classical 
acquisition method, optical character recognition (OCR) systems have been designed for 
many years to reach a high level of recognition with constrained documents, meaning those 
falling into traditional layout, with relatively clean backgrounds such as regular letters, 
forms, faxes, checks and so on and with a sufficient resolution (at least 300 dots per inch 
(dpi)). With the recent explosion of handheld imaging devices (HIDs), i.e. digital cameras, 
standalone or embedded in cellular phones or personal digital assistants (PDAs), research 
on document image analysis entered a new era where breakthroughs are required: 
traditional document analysis systems fail against this new and promising acquisition mode 
and main differences and reasons of failures will be detailed in this section. Small, light, and 
handy, these devices enable the removal of all constraints and all objects, such as natural 
scenes (NS) in different situations in streets, at home or in planes may be now acquired! 
Moreover, recent studies [Kim, 2005] announced a decline in scanner sales while projecting 
that sales of HIDs will keep increasing over the next 10 years.  

1.1. Challenge of natural scene text understanding 

First of all, in order to understand challenges of this field, new imaging conditions and 
newly considered scenes need to be detailed. The new imaging conditions deal with: 
• Raw sensor image and sensor noise: in low-priced HIDs, pixels of a raw sensor are 

interpolated to produce real colours, which can induce degradations. Demosaicing         
techniques, viewed more as complex interpolation techniques, are sometimes required. 
Moreover, sensor noise of an HID is usually higher than that of a scanner. 

• Viewing angle: scene text and HIDs are not necessarily parallel creating perspective to 
correct.
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• Blur: during acquisition, some motion blur can appear or be created by a moving object. 
All other kinds of blur, such as wrong focus, may also degrade even more image 
quality.  

• Lighting: in real images, real (uneven) lighting, shadowing, reflections onto objects, 
inter-reflections between objects may make colours vary drastically and decrease 
analysis performance. 

• Resolution and Aliasing: from webcam to professional cameras, resolution range is 
large and images with low resolution must also be taken into account. Resolution may 
be below 50 dpi which causes commercial OCR to fail. It may lead to aliasing creating 
fringed artefacts in the image.  

The newly considered scenes represent targets such as: 
• Outdoor/non-paper objects: different materials cause different surface reflections 

leading to various degradations and creating inter-reflections between objects. 
• Scene text: backgrounds are not necessarily clean and white, and more complex         

ones make text extraction from background difficult. Moreover scene text such as that 
seen in advertisements may include artistic fonts.  

• Non-planar objects: text embedded in bottles or cans suffer from deformation. 
• Unknown layout: there is no a priori information on structure of text to detect it 

efficiently.
• Objects in distance: distance between text and HIDs can vary, and character sizes may 

vary in a wide range, leading to a wide range of character sizes in a same scene. 

Fig. 1. Samples of natural scene images. 

The main challenge is to design a system as versatile as possible to handle all variability in 
daily life, meaning variable targets with unknown layout, scene text, several character fonts 
and sizes and variability in imaging conditions with uneven lighting, shadowing and 
aliasing. Our proposed solutions for each text understanding step must be context 
independent, meaning independent of scenes, colours, lighting and all various conditions.  
Hence we focus on methods which work reliably across the broadest possible range of NS 
images, such as displayed in Figure 1. 

1.2. Numerous applications 

As HIDs become more and more powerful, on-the-fly image processing becomes possible, 
opening up a new range of applications. Nevertheless, today's HIDs are easily connected to 
various networks and supplementary computing resources. Starting from sign recognition 
for foreigners for the 2008 Olympic Games in Beijing, automatic license plate recognition to 
driver assisted systems with text projection on windshields, various situations could be 
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handled. Interesting applications such as mobile phones operating as fax machines even led 
to strict sanctions in Japanese bookstores!  
Visually impaired people are directly affected by such research [Thillou et al, 2005]. With an 
HID and sufficient resources, scene in daily life may be analyzed to give them access to text 
and, coupled with a text-to-speech algorithm, make them “read” book covers, banknotes, 
labels on office doors, medicine labels and so on. For the blind community, such devices are 
really expected.  
Another promising application is the one of visual landmark-based robot navigation. 
Several kinds of robot navigation may be listed such as dead-reckoning, map-based 
navigation, positioning sensor-based navigation or landmark-based navigation, which can 
be divided into natural and artificial landmarks. Natural landmarks may be designed on 
purpose for indoor robot navigation, such as room numbers [Mata et al., 2001], displayed in 
Figure 2, but may also be part of real life such as natural scenes. Even if conditions of 
navigation are still constrained, natural landmark-based one is very promising and 
satisfying results already appeared. Hence either nameplates, information signs or any text 
embedded in images contain large quantities of useful semantic information. Text 
understanding may be useful in high level robot navigation, such as path planning or goal-
driven navigation. Applications are very numerous and currently only limited by 
imagination. Scene text is an important feature to understand for all these applications. 

Fig. 2. Natural and artificial landmarks used in [Mata et al., 2001]. 

1.3. Overview of the chapter 

How does one achieve the pre-cited applications? By using a text understanding system, 
which encompasses three main steps: text detection and localisation, text extraction from 
background, and text recognition. 
Text detection and localisation find answers to the question:   “Is there any text and where is 
it?”. This part has been extensively studied during previous years. Text extraction from 
background is the field dealing mainly with uneven lighting and complex backgrounds. It is 
a paramount step to prepare data for OCR. Classical image segmentation such as separating 
sky from mountains does not need as much accuracy as text extraction, which is considered 
more as object-driven segmentation. Actually, text is a meaningful object which has to be 
extracted properly to be better recognised afterwards. Text recognition is the final step to 
convert character images into ASCII values to understand text and use it for particular 
applications.   



Vision Systems - Segmentation and Pattern Recognition 310

Other NS text analysis steps such as warping, mosaicing or text tracking are also part of text 
understanding systems for different applications and for more details, the reader may refer 
to the overall state-of-the-art of Liang et al [Liang et al., 2005]. 
Particular focus is cast on the text extraction step: it is declared as the “most important factor 
for high performance” by In-Jung Kim [Kim, 2005]. Slightly studied since the inception of 
camera-based text analysis, text extraction suffers from imaging conditions. On the other 
hand, the text detection step will be only briefly mentioned in this chapter. S. Lucas, after 
the ICDAR (International Conference on Document Analysis and Recognition) 2005 text 
locating competition [ICDAR Competition, 2003], was able to conclude that “in text locating, 
[...] there has been a significant advance in performance [and] most easy-to-read (for 
humans) text is now well detected”. He also mentioned that variations in illumination such 
as reflections cause significant problems for text understanding. Hence, considerations on 
uneven lighting and how to circumvent it for efficient text extraction are particularly 
highlighted as well.  
Section 2 will describe background on text extraction and additional steps to achieve an 
efficient text understanding system such as character segmentation. Literature survey is also 
browsed along these lines. Section 3 will form the main body of the chapter with our 
selective metric clustering (SMC) algorithm for text extraction. The proposed solution is 
detailed with justifications of each step and several experiments including comparisons with 
other recent techniques to highlight the performance of the whole method. Section 4 will be 
devoted to segmentation of extracted text into individual units such as characters to     
improve recognition afterwards. Log-Gabor filters, well designed for NS images, are used 
here for the first time for character segmentation into individual components. Section 5 will 
describe home-made recognition used for natural scene characters with details to build an 
efficient training database. Finally, Section 6 will end this chapter with conclusions about 
text understanding for NS images and remaining issues.  

2. State-of-the-Art of Natural Scene Text Understanding 

Text understanding systems include three main topics: text detection, text extraction and 
text recognition. We assume images input into our system have previously detected text if 
there is any in the image. A text extraction system usually assumes that text is the major 
input contributor, but also has to be robust against variations in the detected text's bounding 
box size. For a detailed survey on text localisation methods, usually grouped into region-
based, edge-based, connected components-based and texture based, the reader may refer to 
the survey of Jung et al. [Jung et al., 2004]. Hence, this section first details state-of-the-art 
methods of text extraction and then discusses character segmentation to improve text 
extraction and consequently, text recognition. 
Text extraction is a critical and essential step as it sets up the quality of the final recognition 
result. It aims at segmenting text from background, meaning isolated text pixels from those 
of background. A very efficient text extraction method could enable the use of commercial 
OCR without any other modifications. Due to the recent launch of the NS text 
understanding field, initial works focused on text detection and localisation and the first NS 
text extraction algorithms were computed on clean backgrounds in the gray-scale domain. 
Following that, more complex backgrounds were handled using colour information. 
Identical binarisation methods were at first used on each colour channel of a predefined 
colour space without real efficiency for complex backgrounds, and then more sophisticated 
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approaches using 3D colour information, such as clustering, were considered. The 
classification of text extraction methods is displayed in Figure 3 and will be detailed further.  

Fig. 3. Classification of text extraction methods. 

• Thresholding-based methods 
Thresholding-based methods, as the name implies, define a threshold globally (for the 
whole image) or locally (for some given regions) to separate text from background.  
Histogram-based thresholding is one of the most widely used techniques for monochrome 
image segmentation. Images are composed of several homogeneous regions with different 
pixel values; text is one of these regions. A histogram counts the number of each pixel value. 
Peaks (or modes) in histogram (meaning that several pixels have this same value) are 
considered as regions to segment. The threshold is chosen as the value corresponding to the 
valley between two peaks. The most referenced method is the one described by Otsu [Otsu, 
1979], which minimises the weighted sum of within-class variances of the foreground and 
background pixels to get an optimum threshold as in [Thillou et al., 2005] for a visually 
impaired-driven application. Messelodi and Modena [Messelodi & Modena, 1992] chose two 
thresholds to strictly isolate the peak corresponding to text. These methods work well with 
low computational resources but are applied mostly on gray-scale images or colour channels 
independently. Moreover, they fail for images without any obvious peaks or with broad 
valleys which appear with complex backgrounds and slightly varying colours. Adaptive or 
local binarisation techniques define several thresholds for different image parts depending 
upon the local image characteristics. Several papers [Li & Doermann, 1999; Zandifar et al., 
2005] for video text extraction used the Niblack's method [Niblack, 1986] where the 
threshold depends on local mean and standard deviation over a square window of size to 
define. An extension is the method of Sauvola and Pietikäinen [Sauvola & Pietikäinen, 2000] 
where the threshold is defined according to two parameters to define.  Gllavata et al. 
[Gllavata et al., 2003] created their own local thresholding based on beginning and end of 
text lines. They assumed fairly horizontal text lines which is not necessarily the case for NS 
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images. Adaptive binarisations may handle more degradation (uneven lighting, varying 
colours) than global ones but suffer to be too parametric which is not versatile. Moreover, 
these techniques still consider gray-scale images only and were mainly used for video 
caption text or documents with clean backgrounds. Entropy-based methods, appropriately 
named, use the entropy of the gray levels distribution in a scene. Li and Doermann [Li & 
Doermann, 1999] minimised the cross-entropy between the input video gray-scale frame 
and the output binary image. The maximisation of the entropy in the thresholded image 
means that a maximum of information was transferred. Du et al. [Du et al., 2004] compared 
Otsu's binarisation and different entropy-based methods to assess that the joint relative 
entropy performs best on RGB channels independently for video caption text. Entropy-
based techniques have been little referenced in NS context and applied only on gray-scale 
images or separate channels of a particular colour space. 
Thresholding-based methods are lightweight enough to fit low-computational resources; 
that is why they are preferred for particular applications with clean backgrounds for their 
satisfying results on gray-scale images. Nevertheless, they are not the most suitable to 
handle complex backgrounds, varying colours, uneven lighting and so on. 
• Grouping-based methods 
The following methods group text pixels together according to certain criteria to extract text 
from background. Most popular techniques are clustering-based and are detailed further 
below. Region-based approaches include spatial-domain region growing, splitting and 
merging, and have been extensively used in general colour image segmentation with 
unknown content. These methods may be classified into two groups: top-down and bottom-
up. The first one has been experienced in Kim et al. [Kim et al., 2005] by starting with the 
entire image and going towards smaller parts with differences between gray values 
exceeding a certain value. A merging process followed to refine results. In video captions, a 
bottom-up approach has been used by Lienhart and Wernicke [Lienhart & Wernicke, 2002]. 
Based on the assumption that the text contrasts well with its background, a seed around 
borders of text bounding box was chosen to be sure it belonged to background. With the 
Euclidean distance between RGB colours in a 4-neighborhood, background was extended if 
the distance remained below a particular value. In these two methods, a value was pre-
defined and as all parametric methods, it is not versatile and cannot handle all degradations 
of NS images. Moreover region-based approaches are computationally quite expensive. 
However, they use spatial information which groups text pixels efficiently. Learning-based 
approaches have initially been designed to mimic humans by learning a training database to 
further recognise similar patterns. Text has interesting spatial properties and may be 
considered as a particular texture. Several classifiers are widely applied for pattern 
recognition and multi-layer perceptrons (MLP) and self-organising maps (SOM) are the 
most studied in text extraction. Neural networks, MLP or SOM, composed of linked neurons 
such as human brains, may model very general functions with any degree of non-linearity 
to separate pixels of text and non-text into two classes. In Hamza et al. [Hamza et al., 2005], 
a cascaded approach for colour historical documents with a SOM followed by an MLP was 
used in the training part while the trained MLP was used for testing alone. It overcame 
results of thresholding-based methods. Nevertheless, a training database is needed and with 
the wide range of NS images, this task is difficult to realise. Moreover it implies storage 
problems and labelling of the whole training database before being effective. Clustering-
based approaches group colour pixels into several classes assuming that colours tend to 
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form clusters in the chosen colour space. They belong to unsupervised segmentation while 
learning-based approaches belong to supervised segmentation. Clustering-based algorithms 
are the most renowned and efficient methods for NS images. They are often considered as 
the multidimensional extension of thresholding methods. The most popular method is k-
means but its generalisation, Gaussian Mixture Modelling (GMM), is more and more 
exploited.  
1. From density-based clustering to Mean-Shift: Extension of histogram-based 

thresholding, density-based clustering is applied on colour images and needs the     
computation of a 3D histogram to handle colour dimensions. Adjacent colours are then 
merged towards the nearest highest peak. The algorithm terminates when the number 
of desired colours is obtained. It was used on coloured books and journal covers with     
relatively clean background and video scene text in Sobottka et al. [Sobottka et al., 
1999]. Perroud et al. [Perroud et al., 2001] used a 4D-histogram with the RGB colour 
space and the channel of luminance. The Mean-Shift algorithm, first created by 
Fukunaga in 1975 and extended by Comaniciu [Comaniciu, 2000], seeks the “mode”, 
point of highest density, of the 3D colour histogram. First it defines a window centered 
randomly at a point. The mean over the window is computed and the Mean-Shift is 
expressed according to the density estimate. This successful technique has not been 
tested on NS text, but more generally on colour segmentation.  

2. From graph theory to spectral clustering: In graph theory concept, colour pixels are 
merged based on the minimum Euclidean distance (or another one) in a connected 
neighbourhood to form regions in the colour space. These merged pixels are     
represented by vertices in the graph and links between geometrically adjacent regions 
have weights that are proportional to the colour distance between the regions they     
connect. They describe a hierarchy to solve by graph theory such as in [Lopresti & 
Zhou, 2000; Wang et al., 2004]. It may be solved by finding a minimum of normalised 
cuts or more generally by spectral clustering. This latter method computes eigenvectors 
of the Laplacian matrix to have representation in the spectral space. The Laplacian 
matrix L is equal to 2/12/1 −−−= ADDIL where I is the identity matrix, D is the 
diagonal matrix whose diagonal elements are the sum of corresponding row of A, the 
affinity matrix, by then stacking the k eigenvectors in columns in a matrix which will be 
normalised, and fed to the k-means algorithm. k is the desired number of clusters. The 
main advantage of this technique is the invariance against varying colours.  

3. From k-means to GMM: k-means is considered the most used technique in clustering. 
The procedure follows a simple approach to classify colour pixels in a defined colour 
space through a certain number of clusters (k) fixed a priori. The main idea is to define 
k centroids, one for each cluster and compute a defined distance between points and 
centroids. Iteratively, all pixels belong to a cluster whose centroid is the nearest one. 
Another way to deal with clustering issues is to use a model-based     approach, also 
called probabilistic clustering. In practice, each cluster can be mathematically 
represented by a parametric distribution (assumed to be Gaussian). All colour pixels are 
therefore modelled by a finite mixture of these distributions and parameters are 
automatically computed with the Expectation-Maximisation (EM) algorithm or one of 
its variants.  

There has been little experimentation done on text extraction using other clustering methods 
such as fuzzy c-means, which is the extension of k-means with a degree of belonging to a 
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cluster. As all methods can obviously not be cited in this thesis, the reader may refer to the 
survey of Berkhin [Berkhin, 2002].  
Faced with multiple degradations and diversity of situations, text extraction alone is not 
sufficient to produce recognisable text for off-the-shelf OCR. Work on OCR itself may be 
done to improve results such as recognition of much degraded characters [Ojima et al., 2005] 
without any pre-processing. Nevertheless, since the main aim is to provide a solution 
having satisfying performance for several kinds of NS images, it is better to improve text 
quality beforehand, and only if necessary. Typical OCR fails against medium-quality 
extracted text having background portions, misalignment, too many adjoining characters 
such as text on a wavy tee-shirt where some characters are closer than others or totally 
connected. Hence to provide a very high quality extracted text, some post-processing is 
sometimes required and literature mainly counts rule-based methods and segmentation 
algorithms of characters into individual components. 
• Rule-based methods are useful to remove spurious parts of non-textual extracted parts. 

Gatos et al. [Gatos et al., 2005] defined several thresholds and global variables such as 
the maximum and minimum number of expected characters in a text line along with the 
maximum and minimum number of lines in a paragraph, while Esaki et al. [Esaki et al., 
2004] defined a number of rules about character sizes to remove certain parts after a 
global binarisation method. Text properties, such as geometry, alignment, colour, 
differentiating text from other objects may be used to improve text extraction 
algorithms. Nevertheless, strict rules with thresholds are not exploitable at all for NS 
images. 

• Classical character segmentation for traditional typewritten characters fails for NS 
images as it assumes clean conditions and particular kinds of connectedness between 
characters such as the projection profile method implying vertical break lines [Luo et 
al., 2004]. An exhaustive survey on classical character segmentation into individual 
components may be found in [Casey & Lecolinet, 1996]. With the recent emergence of 
NS image analysis, most papers focus on text detection and localisation. When text 
extraction is considered, main tested images include either clean or complex 
backgrounds but almost without joined characters. Text on NS images such as road 
signs, advertisements, has to be large and easy to view with well-spaced characters. 
Nevertheless, more complex images may be considered with all text present in daily life 
such as labels on logos, brand names on clothes and so on. As previously mentioned, 
few papers proposed solutions. Among them, Karatzas and Antanacopoulos [Karatzas 
& Antanacopoulos, 2004] worked on WWW images with difficult text and suggested a 
region-based method to extract text followed by a fuzzy proximity measure to add 
topological properties of character strokes. Chen [Chen, 2003] obtained more individual 
components by considering text extraction with spatial information by using MRF-
based text extraction. Thillou and Gosselin [Thillou & Gosselin, 2004] extracted text 
with a k-means clustering method and combined textual clusters by paying attention to 
pixels which connected individual components. 

Part of our motivation is to build an efficient text understanding system with lightweight 
algorithms to fit within mobile devices' resources (such as PDAs) as they will be intensive 
future users of these systems. 
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3. Natural Scene Text Extraction 

Text extraction is a challenging issue, made even more difficult in a NS context. Classical 
binarisation algorithms on gray-scale images showed their limitations to handle NS 
degradations. Colours have to be taken into account and we propose an algorithm that we 
call Selective Metric Clustering (SMC). We perform a 3-means clustering algorithm using two 
metrics, the Euclidean distance Deucl and an angle-based similarity Scos, in order to mainly 
circumvent effects of varying colours, complex backgrounds and uneven lighting.  
Several metrics, either distances or similarities, have been designed to be used in k-means in 
different fields requiring unsupervised classification, such as the Minkowski metric, 
generalisation of the traditional Euclidean distance, the Canberra distance or the normalised 
correlation for example. Several other measures exist and the reader is referred to 
[Plataniotis & Venetsanopoulos, 2000]. Angle-based similarities have been previously used 
for edge detection or colour segmentation by Wesolkowski [Wesolkowski, 1999] by 
exploiting the sine of the angle between colour vectors, for colour classification by Hild 
[Hild, 2004], and for vector directional filtering by Lukac et al. [Lukac et al., 2005].  
To include hue information inside the RGB colour space, angle-based similarities may be 
considered as: 
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Hence, by keeping the same colour space and preventing computationally expensive 
conversions, hue information may be included with the use of angle-based similarities. 
Moreover, similar colours have parallel orientations even when degraded with uneven 
lighting or by shiny material. In natural scene images, (slight) variations are a frequent 
occurrence within the same object of same colour due to all sources of variations and angle-
based similarity may deal with metamers to properly extract text. Finally, an angle-based 
similarity represents chromaticity difference information whereas the Euclidean distance 
computes the intensity difference information. Their combination enables one to perform 
intensity-dependent segmentation directly from the RGB image in areas of different colours, 
and the other to perform intensity-invariant segmentation in regions of similar but not 
identical colours. 
Based on intensive tests [Mancas-Thillou, 2006], we chose an angle-based similarity Scos

equal to Equation 2. 
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Additionally, intensity is paramount information to distinguish similar pixels of the same 
colour but different intensities and SMC includes a gray-scale image, thresholded with a 
traditional global binarisation to build a multi-hypothesis text extraction. Finally, as text is a 
meaningful object and as the chosen k-means clustering does not integrate spatial 
information, SMC opts for the proper text extraction by using clues of spatiality. 
Figure 4 details steps of the SMC algorithm for text extraction and the following subsections 
detail each of these steps. 
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 Fig. 4. Steps of the SMC algorithm. 

3.1. Utilisation of a multi-hypothesis text extraction 

After a colour reduction and colour inversion to always get dark text on bright background, 
SMC performs two clustering algorithms on the initial image with both metrics, Deucl and 
Scos. Moreover, to alleviate effects of achromatic images and improve results of text 
extraction, we add intensity information with the thresholded gray-scale image. For pure 
achromatic images (meaning R=G=B), Scos cannot build 3 clusters efficiently as all pixels are 
on the same diagonal in the RGB cube. The same phenomenon appears for non-pure 
achromatic images where it is rather difficult to separate colours efficiently. This drawback 
is also true in hue-based colour spaces where hue is even not defined! We obtain also three 
possible text extraction results of both metrics and the binarised gray-scale image.  
K-means clustering applied on NS colour images with two metrics forms 3 clusters for each 
one and one cluster is obviously a part of the background, another one is a part of the text 
and the third one is either text or background. For sharper results and hence better character 
recognition, it may be interesting to combine both textual clusters. First of all, the 
background colour is selected very easily and efficiently as being the colour with the biggest 
rate of occurrences on the image edges. Next, we propose a new text validation measure R 
to find the most textual foreground cluster over the two remaining clusters. Based on 
properties of connected components of clusters, spatial information is already added at this 
point to find the main textual cluster. R is based on the largest regularity of connected 
components of text compared to those of noise and background and is defined in Equation3.  
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where N is the number of connected components and area(i) refers to the area of component 
i. This measure enables the computation of the variation in candidate areas. The main 
textual cluster is identified as the one having the smallest R. If the third unknown cluster 
belongs to text, both textual clusters need to be merged. A new computation of R is 
performed considering the merging of both clusters. If R decreases, the fusion is processed. 
This method enables the merging of text of different colours in the same word for instance 
as regularity becomes better.  
With this multi-hypothesis text extraction, we may handle a very large range of NS images. 
The use of Scos is preponderant, as illustrated in Figure 5 with some complex NS images 
which can not be better handled in a k-means framework. Some comparisons were done 
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with the Euclidean distance and by increasing the number of clusters or with other colour 
spaces [Mancas-Thillou, 2006]. Angle-based similarities can extract text of very challenging 
NS images without additional effort and by keeping versatility for other NS images. 

Fig. 5. Extraction results using SMC in a RGB-based k-means framework. 

3.2. Extraction-by-segmentation 

After computation of k-means with two different metrics, the choice between the three text 
extraction methods has to be done. A multi-hypothesis method has been shown by Chen 
[Chen, 2003] by varying the number of clusters in a GMM-based clustering and choosing the 
right segmentation with the final step of recognition. One drawback to this method is to 
keep several segmentations to process during subsequent steps and to increase the number 
of text areas to recognise. Moreover, recognition is logically an efficient step to choose the 
right segmentation, but in complex NS images, character segmentation or even denoising 
steps must be added, and no decision could be done before the final step of recognition; 
otherwise, recognition results may be erroneously considered bad. In SMC, we choose to 
intermingle consecutive steps to avoid this disadvantage and to add as much information as 
possible. 
Colour information is a very consistent clue for NS images. However the segmentation 
process, previously described in this section, does not make use of spatial information, 
which is quite necessary for object-driven segmentation and specifically text extraction. In 
order to extract characters properly, we exploit the same tool for character segmentation, 
detailed in depth in Section 4. We need to have spatial information to locate characters in the 
image, as well as needing the frequency information to use illumination variation to detect 
character edges. Hence, log-Gabor filters proposed by Field [Field, 1987] are chosen for 
decision making, because they particularly fit well to NS images.  
One important parameter for log-Gabor filters is the filter frequency. As we used them to 
enhance characters in a gray-scale image, we choose a frequency equal to the inverse of the 
rough thickness of characters, determined by the number of pixels of the extracted result 
and its skeleton. A simple ratio between these two latter values is computed and the inverse 
is the frequency of log-Gabor filters. Results of log-Gabor filters present globally high 
responses to characters with this set frequency. Hence in order to efficiently choose the best 
extracted text result, we perform an average of pixel values. The segmentation having the 
highest average is chosen as the final segmentation. 
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3.3. SMC evaluation and results 

Table 1 details results for the three hypotheses (two clustering and global binarisation) on 
the public database ICDAR 2003 [ICDAR Competition, 2003], which includes 2268 natural 
scene words. Results are expressed in terms of Precision, Recall and F-scores defined in 
Equation 4.  F-score is the weighted harmonic average of Precision and Recall in order to 
more easily compare results. 
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Extraction Precision Recall F-score 

Deucl 0.90 0.88 0.89 

Scos 0.93 0.36 0.52 

Binarised gray-scale image 0.88 0.76 0.82 

Table 1. Precision, Recall and F-score measures of text extraction performed by the three 
extraction hypotheses. 

To add more arguments to complementarities between these three extracted results, Deucl

performs better in 5% images, while Scos in 12% and the global thresholding in 9%. There is a 
larger overlap between Deucl and the global thresholding which performs quite equally in 
69% images. 
To choose the right text extraction, we opt for log-Gabor filters by adding spatial 
information. In [Mancas-Thillou & Gosselin, 2006], we compared the performance of this 
method with the Silhouette technique, a measure of how well clusters are separated, to 
choose between the two metrics only. It can be logical to think that best text extraction 
results present the best separation between clusters. However, it is not always true because 
Silhouette performs well in 77.7% images and our proposed method using spatial 
information performs well in 93.2%, yielding an improvement of 19.9%. 
A few works deal with NS text extraction and we compare SMC, firstly, with solutions of 
Wolf et al. [Wolf et al., 2002] which designed an extended method of Sauvola and 
Pietikäinen [Sauvola & Pietikäinen, 2000] to extract text from NS images or videos, and then, 
with solutions of Garcia and Apostolidis [Garcia & Apostolidis, 2000] which used a k-means 
clustering in the HSV space with the Euclidean distance only. Combination of clusters in 
this last method has not been implemented and a perfect combination is assumed while our 
method is tested including our combination method. Results are presented in terms of 
Precision, Recall and F-score in Table 2. 
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Methods Precision Recall F-score 

Wolf et al. 0.35 0.19 0.25 

Garcia and Apostolidis 0.66 0.57 0.61 

SMC 0.95 0.91 0.93 

Table 2. Comparison of Precision, Recall and F-score measures between Wolf's method, 
Garcia and Apostolidis's method and our SMC method. 

The combination of two metrics in a clustering framework and a global thresholding has 
proven its efficiency compared to two recent and competing algorithms. Finally, due to the 
explosion of use of camera phones or digital cameras and huge amount of images to process 
for text extraction, the algorithm needs to be relatively fast in order to provide satisfying 
results for frequent use. Our text extraction algorithm runs in 0.61 seconds on average for 
our databases on a PC with a Pentium M-1.7 GHz micro-processor. The source code for text 
extraction was developed in C language but could be optimised further. 

4. Unit-based Segmentation 

This section deals with segmentation of text areas into specific units, such as lines, words 
and characters. In commercial OCR systems, this process is usually included and is quite 
successful except for severely degraded characters, strongly broken or tightly connected 
ones where recognition rates drastically drop. Incorrect segmentations due to perspective, 
for example, may even lead to no recognition at all. Usually, NS text, handled in literature, is 
well separated due to their reading goal. However, complex NS images with low resolution, 
perspective or wavy surfaces present challenges and unit-based segmentation has recently 
become a point-of-interest to circumvent recognition errors. Hence, we describe a fast and 
simple line and word segmentation method and an innovative and robust character 
segmentation method using log-Gabor filters. 

4.1. Line segmentation 

NS images may present several words but usually only a few lines if we cite street names or 
book titles. Nevertheless, colourful magazine headlines or abstracts on book covers or even 
camera-based documents such as restaurant menus may have several lines. Line  
segmentation are usually not considered as difficult for NS images but present interesting 
challenges for skewed text areas; as such we present very fast and intuitive algorithms.  
Segmentation into lines is an old topic and the two main and successful methods are either 
the vertical projection profile or the Hough transform. The first one is a histogram of the 
number of text pixels accumulated along text lines and projected vertically. The projection 
profile has maximum-height peaks for text and valleys for inter-line spacing. It is quite 
sensitive to noise and skewed lines. The second method maps each point in the original (x,y) 
plane to all points in the (r, ) Hough plane of possible lines through (x,y) plane with slope 
and distance from origin r. This method performs well on skewed text and may also 
simultaneously deskew it with the knowledge of  value but it is on the other side 
computationally quite expensive.  
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Connected components coming from our text extraction step to perform the deviation 
measure R are already computed with general properties, such as height of characters hchar.
On the bounding box of the text area, we define the approximate number of lines Nl by: 
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where htext is the height of the text area, μ(hchar) is the average of hchar on all characters and 
floor(x) is the largest integral value less or equal to x. All y-coordinates of character 
centroids are then clustered with the k-means algorithm, k being equal to Nl segmentation. 
For strongly skewed lines, a fast deskewing is required based on the height of the text 
bounding box. The first text pixel of the first row of the tightest bounding box is detected 
and if its position is before the middle of the image width, the skew angle is negative; 
otherwise it is positive. A first rotation of 1° is computed in the determined direction. If the 
bounding box is shorter in height than the previous one, successive rotations are performed 
until the bounding box becomes higher meaning that the skew angle was larger than 1°. 

4.2. Word segmentation 

Word segmentation, contrarily to line segmentation useful for better character recognition, 
is a crucial step for text understanding after recognition, such as by speech synthesis. A 
natural linguistic parser is always part of a text-to-speech algorithm and it is important to 
identify words for a proper pronunciation as explained in the example: 
Ex: in French, the phonetic transcription can be different, depending on word 
segmentations:              

                                        « les tas »  [ l e t a ] and « lestas »  [ l  s t a ] 

In Latin alphabets, the inter-words distance DIW is larger than the one of inter-characters 
DIC. We compute word segmentation by identifying word separations by all distances 
superior to std(DIC) + mean(DIC) with std(.) and mean(.), respectively standard deviation 
and mean of inter-character distances in a given line. This step occurs after the refined 
character segmentation in order to have more correct calculations based on characters and 
spaces between characters. 
For this step, we use a simple statistic method. Some errors may occur when a few words 
are present with distances between words varying due to different fonts or perspective. 
Nevertheless, this algorithm is robust when run against text areas presenting only one word, 
which is quite frequent in NS images or after text detection algorithms, which usually 
oversegment lines. Finally, this rule basically bends to oversegmentation more than 
subsegmentation, which may be more easily handled by our recognition and correction we 
proposed in [Mancas-Thillou, 2006].  

4.3. Character segmentation using log-Gabor Filters 

The first character segmentation algorithms, developed for typewritten characters, appeared 
more than forty years ago to separate each character individually, in order to subsequently 
feed into OCR. Later, these techniques have been extended to segmentation of cursive 
writing for handwritten text. Main techniques for typewritten characters are categorised into 
three groups. Image-based methods are mainly issued from projection analysis or the 



Natural Scene Text Understanding 321

“Caliper” distance, which is the distance between the uppermost and bottommost pixels in 
each column meaning that smallest distances are tentative segmentation places, as 
experienced in camera-based document processing [Thillou et al, 2005]. These methods 
imply vertical separation only, which is not convenient at all for strongly joined characters 
or skewed and italic ones where parts of a character infringe on the space occupied by the 
next one. Recognition-based methods use a sliding window of variable width to provide 
sequences of hypothetical segmentation locations which are confirmed or refuted by 
character recognition. These techniques also give only vertical separations and need robust 
OCR to reject or accept all possible segmentations, which are quite numerous, even for a 
single word! Hybrid methods mainly encompass oversegmentation methods. A word is 
dissected into its smallest possible components and recognition is based on these units to 
individually recompose the characters one at a time. They are particularly well suited for 
joined and broken characters and segmentation results are not only vertical as based on 
small components. Nevertheless, oversegmentation techniques need a dedicated recogniser 
based on unit features. 
NS images need robust character segmentation since not all aforementioned methods are 
suitable, and off-the-shelf OCR using them lead to too many recognition errors. A gap 
between complex NS images and character recognition has to be filled to extend 
applications and use of NS images in daily life. A NS character segmenter is needed to 
increase NS character recognition and has to be robust against already individual characters, 
broken and joined ones and against unknown fonts, italic characters or with perspective. A 
very innovative solution, using log-Gabor filters and the recognition step that follows in a 
hybrid method, is fundamentally different from existing ones, and is presented after 
focusing on properties of these filters
• Why are log-Gabor filters appropriate for NS character segmentation? 
Character segmentation in NS images obviously needs text properties and gray-level 
information to complement the colour information exploited in text extraction. Hence 
simultaneous spatial and directional information (for character separation location) and 
frequency information (gray-level variation to detect cuts) are required. Gabor filters are a 
traditional choice to address this issue: they are cosine-like filters having a given direction 
and modulated by a Gaussian window. They have been extensively used to characterise 
texture, and more specifically in our context, to detect and localise text into an image. In this 
aim, Gabor filters are quite time consuming because several directions and frequencies must 
be used to handle the variability in character sizes and orientations. Moreover, Gabor filters 
present limitations: large bandwidth filters induce a significant continuous component and 
only a maximum bandwidth of 1 octave could be designed. Field [Field, 1987] proposed an 
alternative function called log-Gabor which lets us choose a larger bandwidth without 
producing a continuous component. Moreover, he suggested that natural images are better 
coded by filters that have a Gaussian transfer function on a logarithmic frequency scale, by 
showing that their spectrum statistically falls off at approximately 1/f, which corresponds 
well to where the log-Gabor filter spectrum falls off on a linear scale. Figure 6 displays the 
shape of log-Gabor functions at the same frequency but with bandwidth varying from 2 to 8 
octaves. Log-Gabor functions have the same appearance as Gabor functions for bandwidths 
less than one octave. The possibility of sharpening the filters is highlighted. 



Vision Systems - Segmentation and Pattern Recognition 322

Fig. 6. From top to bottom: even (left) and odd (right) log-Gabor filters with a bandwidth of 
2 octaves and even (left) and odd (right) log-Gabor filters with a bandwidth of 8 octaves. In 
the spatial domain, the possibility of sharpening the filters is highlighted. 

Log-Gabor filters in the frequency domain can be defined in polar coordinates by H(f, ) = 
Hf * H  where Hf  is the radial component and H  , the angular one: 
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where f0 is the central frequency, 0 is the filter direction, f is the standard deviation of the 
radial components of the Gaussian describing the filter and is used to define the radial 
bandwidth and  is the standard deviation of the angular part of the Gaussian and enables 
the definition of the angular bandwidth. As we are looking for vertical separation between 
characters, we only use two directions for the filter: the horizontal and the vertical ones. 
Hence, for each directional filter, we have a fixed angular bandwidth of /2, which 
determines . Log-Gabor filters are not really strict with directions and defining only two 
directions enables the handling of italic and/or misaligned characters. For highly 
misaligned characters, the number of directions could be increased to handle this additional 
degradation, but it is important to mention that the angular bandwidth will become 
narrower and hence more selective.
Only two parameters remain to be defined, f0 and f, which are used to compute the radial 
bandwidth. The central frequency f0 is used to handle gray level variations to detect 
separation between characters. The spatial extent of characters is their thickness that we 
consider as the wavelength of “characters”, hence it is logical to get a central frequency close 
to the inverse of the thickness of characters to get those variations. However, the 
measurement of character thickness may not be very accurate depending on the presence of 
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degradations. In order to handle all kinds of degradations, we compensate for inaccurate 
thickness estimation with the second parameter f. If the thickness of characters is not 
consistent inside a character, some character parts can be removed permanently. In this case, 
by increasing the bandwidth, we can support the variability in the thickness of characters 
with a “larger” filter. Moreover, sometimes with very degraded or close characters, the 
thickness is very difficult to estimate and the filter must be very sharp to get each small 
variation in the gray level values such as in Figure 7, with a complex NS image. 

Fig. 7.  Impact of varying log-Gabor bandwidth for character segmentation. Original image 
(top left), binary version (top right), segmentation with large bandwidth (bottom left), 
segmentation with narrow bandwidth (bottom right). 

As degradations and conditions of frequency estimation are quite unexpected, we chose the 
bandwidth filter in a dynamic way using recognition results. In the following part, we detail 
our method and how each parameter is estimated. 
• Character segmentation-by-recognition 
Based on the binarisation of the detected area, which is available with the proposed SMC 
algorithm, the character segmentation may now be performed on gray-level images. To 
define frequency, a classical way is to use a “wavelet-like” method. This means trying out     
several frequencies to get a good result for one of them. This method is time consuming due 
to several convolutions with multiple frequency filters and the number of computations rose 
to the power of two with the second parameter. Text embedded in natural scene images 
presents a quite consistent wavelength, which is very different from the background. For 
our filter, we decided to use a wavelength related to the average of the character 
thicknesses. This is computed by using the ratio between the number of pixels of the first 
mask obtained by the SMC method and its skeleton.  
Due to the large variation in NS character fonts and sizes, the bandwidth has to be chosen 
dynamically. As objects to be segmented are text, we can use segmentation-by-recognition 
to choose the convenient bandwidth. We fix the initial and final values for the bandwidth 
estimation. From approximately 2 octaves to approximately 8 octaves, which makes f/f0

vary with a step of 0.1 (from 0.1 to 0.6), we process six filters and provide the result to an 
OCR engine. 
The result is composed of the vertical filter only as the character separation is mainly 
vertical. Moreover, in the output, only the phase of the filter will be exploited. As the text 
and background information have different wavelengths, the phase contains much more 
information than magnitude, as displayed in Figure 8. Moreover, local variation issued from 
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the initial separation between characters induces a phase difference. The latter one contains 
the gray-level information while the phase shows a local map which makes a good 
separation between the background and the textual information; this intermediate result is 
then multiplied by the first mask from text extraction to remove possible noise around 
characters as displayed in Figure 9. 

Fig. 8.  Log-Gabor filtering results for each filter property. From left to right: phase of the 
horizontal filter, phase of the vertical filter, magnitude of the vertical filter and absolute 
phase of the vertical filter. 

As shown in Figure 9 after filter convolution, characters have mainly low intensities and 
higher background intensities. In order to remove spurious parts between characters and to 
remain parameter-free, we use a global Otsu thresholding [Otsu, 1979], which automatically 
chooses the threshold to minimise the intra-class variance of the thresholded black and 
white pixels. With the use of the absolute phase of the vertical filter, only one threshold 
needs to be determined. After this step, we get a result, such as the one shown at the bottom 
of Figure 9, to choose the bandwidth for filters. 

Fig. 9.  Phase of the vertical filter multiplied by the mask issued from the text extraction 
(left) and result after global thresholding (middle). Improvement is obvious from the binary 
version (right). 

We use a home-made OCR algorithm composed of a multi-layer perceptron with 
geometrical features to recognise characters, which is trained by a separate data set and is 
used to assess how well characters are segmented. Detailed explanations about this in-house 
OCR are provided in Section 5. After applying log-Gabor filters, connected components 
(mostly characters) are given as inputs to OCR. Recognition rates for each character or 
assumed character are averaged and the maximum score enables the choice of the 
bandwidth. This estimation needs six straightforward filters with only one frequency which 
enables the use of log-Gabor filters for character segmentation in a low-resource context. 
Some examples are given in Figure 10 to appreciate performance of this proposed character 
segmentation based on log-Gabor filters. From top, the third example is composed of 
severely joined characters and the result after segmentation is very satisfying. Between ‘i’ 
and ‘n’ of the word ‘smokin’, the connection is still present but the recognition is now 
successful even with off-the-shelf OCR including traditional segmentation. The last example 
illustrates an original image with characters of two different major colours (yellow and 
white) and a yellow and blue background. Based on our combination of clusters, the ‘M’ of 
the word ‘Memorex’ has been reconstituted but simultaneously with some parts of 
background. Nevertheless, the yellow background information has a different intensity and 
frequency than the ‘x’ character, leading to a successful segmentation. 
Even if in NS images, broken characters are rare due to the relatively large thickness of 
characters whose aim is to be read, it may be useful to have solutions for handling them. To 
recompose parts of a single character, we proposed in [Mancas-Thillou et al., 2005] an 
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algorithm using log-Gabor filters as well. It enables the correction of already broken 
characters (particular fonts or text extraction errors) and new broken characters due to 
recognition failures. The bandwidth is fixed and the frequency estimation is refined by an 
iterative log-Gabor convolution. 

Fig. 10.  Some character segmentation examples. From left to right: original image, SMC-
based binary version and result after character segmentation. 

The convolution of text extraction results with log-Gabor filters has several goals: to choose 
the better extracted text, to segment characters into individual parts and also to fuse broken 
characters by validating or not previous outputs. Log-Gabor filters give a large set of 
applications in NS images with a large modularity and very satisfying results as detailed in 
the following subsection.  

4.4. Character segmentation evaluation 

In Table 3, comparisons are done between the behavior of an efficient commercial OCR 
(ABBYY FineReader 8.0 Professional Edition Try&Buy) against initial images without any 
processing, after the SMC-based text extraction without character segmentation, after a 
classical “Caliper” distance-based segmentation and after the log-Gabor-based segmentation 
-by-recognition to show the efficiency and necessity of this latter method to improve 
recognition results. Error rates are computed using the Levenshtein distance between the 
ground truth and the resulting text. The Levenshtein distance between two strings is given 
by the minimum number of operations needed to transform one string into the other, where 
an operation is an insertion, deletion, or substitution of a single character. Equal weights for 
each operation are employed in our computation. Error rates are then computed by dividing 
with the number of characters. By using the Levenshtein distance, some error rates for a 
word may be superior to 1, but it is useful to penalise broken characters. Tests have been 
computed on 10% of the database due to the impossible automatic processing with a 
commercial OCR. To compute log-Gabor filtering, we use the Kovesi' toolbox [Kovesi, 2006] 
in Matlab. The home-made OCR, which is useful to choose the right bandwidth, has been 
extended in C language from a version of Gosselin [Gosselin, 1996]. The “Caliper” distance 
and evaluation measures have been developed in Matlab. 
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Error rates Colour
images

SMC-based 
images

“SMC-based+
Caliper” images 

“SMC-based +Log-
Gabor” images 

ICDAR2003
database 71% 40% 43% 19% 

Table 3. Usefulness of character segmentation in natural scene images stated from 
recognition error rates with a commercial OCR. 

For the ICDAR2003 database, “Caliper”-based segmentation even gives worse results than 
without segmentation. It is mainly due to the number of broken characters which increases. 
Log-Gabor segmentation drastically decreases error rates. 
In this proposed character segmentation, the bandwidth is estimated with the recognition 
step and we compute the efficiency rate of this decision. Some erroneous choices could be 
made due to our majority vote on the whole text and the decision is correctly taken in 98.1% 
of images. Errors are mostly avoided with this character segmentation-by-recognition as 
each decision is checked with other steps dynamically. Main errors are either due to the 
OCR engine with much degraded characters or to the presence of thin characters. As log-
Gabor filters exploit intensity information to accurately segment characters into individual 
components, if characters are too thin, they will be easy to break in several pieces of 
characters, leading to erroneous recognition. 
Some deeper comparisons [Mancas-Thillou, 2006] have been done with a recent method 
from Gatos et al.  [Gatos et al., 2005], who used the same public database. Their text 
extraction is based on a gray-scale adaptive thresholding and they proposed to recombine 
characters components based on several rules to avoid too many joined characters. We use 
the same evaluation method being the Levenshtein distance. Improvement may be observed 
with an error rate decreasing of around 43%.  

5. Natural Scene Character Recognition 

From text extraction to unit-based character segmentation, the main goal was to improve 
extracted text in order to finally increase recognition rates. Hence, in this section, the 
objective is to provide high-quality extracted text in order to exploit off-the-shelf OCR. 
Nevertheless, NS character recognition, faced with the very large diversity of images 
without any a priori information, needs suitable conditions to work properly, such as a huge 
and representative training database.  

5.1. Considerations on character recognition 

To focus on NS character recognition, main recent papers deal with gray-level characters to 
handle degradations and low resolution of acquisition. The idea is therefore to build 
efficient recognisers against some issues without improving characters beforehand. For 
WWW images, Zhou et al. [Zhou et al., 1997], first extracted characters by colour clustering 
and then converted the characters' colours into gray-scale. The main colour receives the 
value of 255 and the other ones are set to differences from the representative colour. The 
character shape is then treated as a 3D surface and a polynomial surface fitting method 
(Legendre polynomial basis) is used as feature extractor and a basic character-to-class 
Euclidean distance is used to recognise characters. For NS text, Zhang et al. [Zhang et al., 
2002] exploited also gray-scale images after intensity normalisation with Gabor-based 
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features in the context of Chinese sign recognition. They performed feature selection with a 
linear discriminate analysis to build a space as discriminate as possible. Finally the 
classification is solved with kNN.  
To perform segmentation-by-recognition in Section 4, we use an extended version of 
classifier from Gosselin [Gosselin, 1996], based on geometrical features and a multi-layer 
perceptron (MLP). In order to recognise many variations of the same character, features 
need to be robust against noise, distortions, style variation, translation, rotation or shear. 
Invariants are features which have approximately the same value for samples of the same 
character, deformed or not. To be as invariant as possible, our input-characters are 
normalised into an N*N size with N=16. However, not all variations among characters such 
as noise or degradations can be modelled by invariants, and the database used to train the 
neural network must have different variations of a same character. 
In our experiments, we use a feature extraction based on contour profiles. The feature vector 
is based on the edges of characters and a probe is sent in each direction (horizontal, vertical 
and diagonal) and to get the information of holes like in the ‘B’ character, some interior 
probes are sent from the center. Moreover, another feature is added: the ratio between 
original height and original width in order to very easily discriminate an ‘i’ from an ‘m’.  
Experimentally, in order to lead to high recognition rates, we complete this feature set with 
Tchebychev moments, which are orthogonal moments. Moment functions of a 2D image are 
used as descriptors of shape. They are invariant with respect to scale, translation and 
rotation. According to [Mukundan et al., 2001], we use Tchebychev moments of order 2 for 
their robustness to noise.
No feature selection is defined and the feature set is a vector of 63 values provided to an 
MLP with one hidden layer of 120 neurons and an output layer of size 36 for each Latin 
letter and digit. Due to few training samples for capital letters, uppercase and lowercase 
letters were initially grouped into the same class. Nevertheless, with the algorithm of 
increasing database described in the next paragraph, an output layer of 62 neurons may be 
considered efficiently. The total number of training samples is 40614 divided into 80% for 
training only and 20% for cross-validation purpose in order to avoid overtraining.  

5.2. Zoom on training database: how to build a relevant and general one? 

Traditional database increasers are based on geometrical deformations such as affine 
transformations or on the reproduction of a degradation model such as [Sun et al., 2004] to 
mimic low resolution. In NS images, the very large diversity must be handled and character 
extraction of a huge data set is awkward and difficult to achieve. Hence, we increase the NS 
database with the image analogies of Hertzmann et al. [Hertzmann et al., 2001], with the 
particular algorithm of texture-by-numbers.  Given a pair of images A and A', with A' being 
the binarised version of A, the textured image in our algorithm, and B' the black and white 
image to transfer texture, the texture-by-numbers algorithm applies texture of A into B' to 
create B. Binary versions are composed of pixels having values of 0 or 1; texture of A 
corresponding to areas of 0 of A' will be transferred to areas of 0 of B' and similarly for 1. 
Multiscale representations through Gaussian pyramids are computed for A, A' and B' and at 
each level, statistics for every pixel in the target pair (B, B’) are compared to every pixel in 
the source pair (A, A’) and the best match is found.  
One sample used to increase the training database is displayed in Figure 11, which also 
schematises the concept of image analogies. 
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Fig. 11.  Principe of image analogies in the context of database increase: A represents the 
textured and segmented character, A' its binary version. From a binary version of an ‘m’ in 
B', the texture is transferred onto B, similar to the analogy between A and A'. 

The entire process of increasing database is firstly based on character extraction from a 
given data set, using SMC algorithm of Section 3. Characters are hence binarised and 
normalised. Deformations on character thickness, slant, rotation, and perspective are then 
performed and the texture-by-numbers is applied on each binary image. A huge and new 
data set is hence built. To provide standardised characters, all newly-textured characters are 
then binarised always using our SMC algorithm, leading to realistic degradations of NS 
images, which enables to increase the database as naturally as possible. Based on the finite 
steps of variation for each of the pre-cited parameters, for one extracted character and one 
given texture, 33480 samples may be created. Hence, the power of increasing database of 
this method is very large (almost infinite depending on the parameter variation and the 
number of textures). Some tests have been done on recognition and rates are slightly 
increased. Extensive studies are needed to know if the increase is due to the enlarging 
database and/or the representativeness of the database with texture transfer. Nevertheless, 
this technique enables the growing of a database in a fast and reliable way. 
Finally, character recognition alone is hardly error-free and linguistic information needs to 
be added to correct errors for which we build a light and modular solution. For this 
purpose, we intermingle steps of recognition and correction in order not to consider OCR as 
a “black box”.  

6. Conclusion and Future Works 

This last section aims at concluding this chapter by summing up main steps in the first part 
to highlight important points according to us to realize an efficient and versatile NS text 
understanding and the second parts emphasizes interesting work prolongations in other 
image processing fields and the focus to give in next years. 
Our SMC algorithm has been proposed based on a multi-hypothesis text extraction by 
selecting either the right clustering metric or the dual information between colour and 
illumination, using log-Gabor filters. Several points have been detailed such as the 
superiority of metrics over colour spaces in a clustering framework inside a general NS 
context. Angle-based similarities have overcome any other colour spaces to handle     
complex NS images, meaning mainly images with complex backgrounds and uneven 
lighting. Moreover, complementarities between the Euclidean distance and angle-based 
similarities in a k-means method to handle a very large set of NS images have also been 
described. Spatial and luminance information have been added to choose the best text 
extraction to provide to recognition. To circumvent NS challenges, text extraction was     
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intermingled with the subsequent step of character segmentation and very encouraging 
results have been shown in terms of Precision, Recall and F-score, comparison with other     
state-of-the-art algorithms, and while keeping a reasonable computation time. 
Our selective metric-based clustering is aimed at being versatile and results we have 
provided show that it is. Nevertheless, SMC mainly uses colour information and one 
drawback of our system is for natural scene images having embossed characters. In this 
case, the foreground and background have the same colour imparting partial shadows 
around characters due to the relief but not enough to discriminately separate the textual 
foreground from the background as displayed in Figure 12. Gray-level information with the 
simultaneous use of a priori information on shadows and character properties could be a 
solution to handle these cases. Nevertheless, it may be relevant to note that a robust OCR 
may also give satisfying results without any modifications of our algorithm. 

Fig. 12.  Error example of our selective metric-based clustering: initial colour embossed 
image on left and the SMC result on right. 

In a second step, we propose NS character segmentation-by-recognition based on log-Gabor 
filters whose some parameters are defined dynamically. This algorithm fulfils initial 
requirements and gives interesting results under various aspects: 
• No assumption on characters fonts, sizes or skew is done 
• Characters are segmented with not only vertical separations but cuts following the 

character profile, leading to increased recognition rates 
• Touching and broken characters are handled 
• The algorithm is made more robust by using additional information with the 

consecutive step of character recognition 
• Satisfying results in terms of recognition rates and Levenshtein distance. 
To conclude, log-Gabor filters are very modular and efficient tools to segment NS characters 
into individual and understandable components.  
Among future works of each step detailed in the previous paragraphs, one of the main 
prolongation works will be to extend some of these solutions for extraction of other objects 
in natural scene images to show once again versatility of these methods. Obviously, 
character segmentation is a dedicated step of text analysis. Nevertheless, our combination of 
colour, intensity and spatial information or handling of low resolution frames may lead to 
interesting results for other applications.  
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About the global system and if resources are available, the small amount of errors at each 
step may be decreased by keeping information until recognition. These additional 
hypotheses will be handled through another step of information fusion.  
Due to the great expansion of electronic goods and their ever increasing performance, 
readers may wonder if these chapter topics will not be obsolete in a few years. In some 
recently launched smartphones in Asia with 3.2 Megapixels cameras and rudimentary 
embedded OCR or with expansion to 8 Megapixels of consumer-grade digital cameras, text 
extraction part handling complex backgrounds and uneven lighting will be necessary for a 
long time: professional expensive cameras have still problems with illumination by nature 
and complex backgrounds, especially in advertisements. Such issues will not disappear 
anytime! Unit-based segmentation may be removed by other computationally very 
demanding methods but character recognition is mandatory to understand text. Hopefully, 
text understanding steps will be automatically embedded into handheld imaging devices 
soon for exciting and useful applications in daily life!

7. References 

Berkhin, P. (2002). Survey of clustering data mining techniques, Tech. report, Accrue 
Software

Casey, R.G. & Lecolinet, E. (1996). A survey of methods and strategies in character 
segmentation, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 18, No. 7, 
pp. 690-706 

Chen, D. (2003). Text detection and recognition in images and video sequences, PhD thesis, Ecole 
Polytechnique Fédérale de Lausanne 

Comaniciu, D. (2000). Nonparametric robust methods for computer vision, PhD thesis, Rutgers 
University

Du, Y.; Chang, C-I. & Thouin, P.D. (2004). Unsupervised approach to colour video 
thresholding, Optical Engineering, Vol. 43, No. 2, pp. 282-289 

Esaki, N.; Bulacu, M. & Shomaker, L. (2004). Text detection from natural scene images: 
towards a system for visually impaired persons, Proceedings of Int. Conf. Pattern 
Recognition, pp. 683-686 

Field, D.J. (1987). Relations between the statistics of natural images and the response 
properties of cortical cells, Jour. Opt. Soc. Amer. A, Vol. 4, No. 12, pp. 2379-2394 

Garcia, C. & Apostolidis, X. (2000). Text detection and segmentation in complex colour 
images, Proceedings of Int. Conf. on Acoustics, Speech and Signal Processing, pp. 2326-
2330

Gatos, B.; Pratikakis, I. & Perantonis, S.J. (2005). Towards text recognition in natural scene 
images, Proceedings of Int. Conf. Automation and Technology, pp. 354-359 

Gllavata, J.; Ewerth, R. & Freisleben B. (2003). Finding text in images via local thresholding, 
Proceedings of IEEE Symposium on Signal Processing and Information Technology, pp. 
539-542

Gosselin, B. (1996). Application de réseaux de neurones artificiels à la reconnaissance 
automatique de caractères manuscrits, PhD thesis, Faculté Polytechnique de Mons 

Hamza, H.; Smigiel, E. & Belaid, A. (2005). Neural based binarisation techniques, Proceedings 
of Int. Conf Document Analysis and Recognition, pp. 317-321 



Natural Scene Text Understanding 331

Hertzmann, A.; Jacobs, C.E.; Oliver, N.; Curless, B. & Salesin, D.H. (2001). Image analogies, 
Proceedings of ACM SIGGRAPH, Int. Conf. On Computer Graphics and Interactive 
Techniques

Hild, M. (2004). Colour similarity measures for efficient colour classification, Jour. of Imaging 
Science and Technology, Vol. 15, No. 6, pp. 529-547 

ICDAR Competition (2003). http://algoval.essex.ac.uk/icdar
Jung, K.; Kim, K.I. & Jain, A.K. (2004). Text information extraction in images and video: a 

survey, Pattern Recognition, Vol. 37, No. 5, pp. 977-997 
Karatzas, D. & Antonacopoulos, A. (2004). Text extraction from web images based on a split-

and-merge segmentation method using colour perception, Proceedings of Int. Conf. 
Pattern Recognition, Vol. 2, pp. 634-637 

Kim, I.J. (2005). Keynote presentation of camera-based document analysis and recognition, 
http://www.m.cs.osakafu-u.ac.jp/cbdar

Kim, J.; Park, S. & Kim, S. (2005). Text locating from natural scene images using image 
intensities, Proceedings of Int. Conf Document Analysis and Recognition, pp. 655-659  

Kovesi, P.D. (2006). MATLAB and Octave functions for computer vision and image 
processing, School of Computer Science & Software Engineering, The University of 
Western Australia, http://www.csse.uwa.edu.au/~pk/research/matlabfns/

Li, H. & Doermann D. (1999). Text enhancement in digital video using multiple frame 
integration, Proceedings of ACM Int. Conf. on Multimedia, pp. 19-22 

Liang, J.; Doermann, D. & Li, H. (2003). Camera-based analysis of text and documents: a 
survey, Int. Journal on Document Analysis and Recognition, Vol. 7, No. 2-3, pp. 84-104 

Lienhart, R. & Wernicke, A. (2002). Localising and segmenting text in images, videos and 
web Pages, IEEE Trans. Circuits and Systems for Video Technology, Vol. 12, No. 4, pp. 
256-268

Lopresti, D. & Zhou, J. (2000). Locating and recognising text in WWW images, Information 
Retrieval, Vol. 2, pp. 177-206 

Lukac, R.; Smolka, B.; Martin, K.; Plataniotis, K.N. & Venetsanopoulos, A.N. (2005). Vector 
filtering for color imaging, IEEE Signal Processing, Special Issue on Color Image 
Processing, Vol. 22, No. 1, pp. 74-86 

Luo, X.-P.; Li, J. & Zhen, L.-X. (2004). Design and implementation of a card reader based on 
build-in camera, Proceedings of Int. Conf. Pattern Recognition, pp. 417-420 

Mancas-Thillou, C. (2006). Natural scene text understanding, PhD thesis, Faculté 
Polytechnique de Mons, Belgium 

Mancas-Thillou, C. & Gosselin, B. (2006). Spatial and color spaces combination for natural 
scene text extraction, Proceedings of Int. Conf. Image Processing 

Mancas-Thillou, C.; Mancas, M. & Gosselin, B. (2005). Camera-based degraded character 
segmentation into individual components, Proceedings of Int. Conf Document 
Analysis and Recognition, pp. 755-759 

Mata, M.; Armingol, J.M.; Escalera, A. & Salichs, M.A. (2001). A visual landmark recognition 
system for topologic navigation of mobile robots, Proceedings of Int. Conf. on Robotics 
and Automation, pp. 1124-1129 

Messelodi, S. & Modena, C.M. (1992). Automatic identification and skew estimation of text 
lines in real scene images, Pattern Recognition, Vol. 32, No. 5, pp. 791-810 



Vision Systems - Segmentation and Pattern Recognition 332

Mukundan, R.; Ong, S.H. & Lee, P.A. (2001). Discrete vs. continuous orthogonal moments in 
image analysis, Proceedings of Int. Conf. On Imaging Systems, Science and Technology,
pp. 23-29 

Niblack, W. (1986). An introduction to image processing, Prentice-Hall, pp. 115-116 
Ojima, Y.; Kirigaya, S. & Wakahara, T. (2005). Determining optimal filters for binarisation of 

degraded gray-scale characters using genetic algorithms, Proceedings of Int. Conf 
Document Analysis and Recognition, pp. 555-559 

Otsu, N. (1979). A threshold selection method from gray level histograms, IEEE Trans. 
System, Man and Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979 

Perroud, T.; Sobottka, K.; Bunke, H. & Hall, L. (2001). Text extraction from colour 
documents - clustering approaches in three and four dimensions -, Proceedings of 
Int. Conf Document Analysis and Recognition, pp. 937-941 

Plataniotis, K.N. & Venetsanopoulos, A.N. (2000). Colour image processing and applications,
Springer Verlag 

Sauvola, J. & Pietikainen, M. (2000). Adaptive document image binarisation, Pattern 
Recognition, Vol. 33, pp. 225-236 

Sobottka, K.; Bunke, H. & Kronenberg, H. (1999). Identification of text on coloured book and 
journal covers, Proceedings of Int. Conf Document Analysis and Recognition, pp. 57-62 

Sun, J.; Hotta, Y. & Katsuyama, Y. (2004). Low resolution character recognition by dual 
eigenspace and synthetic degraded patterns, Proceedings of ACM Hardcopy Document 
Processing Workshop, pp. 15-22 

Thillou, C. & Gosselin, B. (2004). Segmentation-based binarisation for color degraded 
images, Proceedings of Int. Conf. on Computer Vision and Graphics

Thillou, C.; Ferreira, S. & Gosselin, B. (2005). An embedded application for degraded text 
recognition, Eurasip Jour. on Applied Signal Processing, Special Issue on Advances in 
Intelligent Vision Systems: methods and applications, Vol. 13, pp. 2127-2135 

Wang, B.; Li, X.-F.; Liu, F. & Hu, F.-Q. (2004). Colour text image binarisation based on binary 
texture analysis, Proceedings of Int. Conf. Acoustics, Speech and Signal Processing, pp. 
585-588

Wesolkowski, S. (1999). Colour Image Edge Detection and Segmentation: a Comparison of 
the Vector Angle and the Euclidean Distance Colour Similarity Measures, Master 
thesis, University of Waterloo 

Wolf, C.; Jolion, J. & Chassaing, F. (2002). Text localisation, enhancement and binarisation in 
multimedia documents, Proceedings of Int. Conf. on Pattern Recognition, pp. 1040-1057 

Zandifar, A.; Duraiswami, R. & Davis, L.S. (2005). A video-based framework for the analysis 
of presentations/posters, Int. Journal on Document Analysis and Recognition, Vol. 7, 
No. 2-3, pp. 178-187 

Zhang, J.; Chen, X.; Hanneman, A.; Yang, J. & Waibel, A. (2002). A  robust approach for 
recognition of text embedded in natural scenes, Proceedings of Int. Conf. on Pattern 
Recognition

Zhou, J.; Lopresti, D. & Lei, Z. (1997). OCR for world wide web images, Proceedings of SPIE 
on Document Recognition V, Vol. 3027, pp. 58-66 



17

Image Similarity based on a Distributional 
“Metric” for Multivariate Data 

Christos Theoharatos, Nikolaos A. Laskaris, George Economou 
& Spiros Fotopoulos 

Electronics laboratory, Dept. of Physics, University of Patras 
Greece

1. Introduction 

The problem of image similarity has become a challenging task in the field of computer 
vision through the last two decades. The assessment of (dis)similarity between color (or 
multichannel, in general) images or parts of images has been studied on several image 
processing application domains such as image indexing and retrieval, classification and 
unsupervised segmentation (Rubner et al., 2001). The basic operations that need to be 
carried out in order to estimate the similarity between two color images are three-fold 
(Stricker & Orengo, 1995): first, choose an appropriate color space for image representation; 
then, extract a signature for each image (using, commonly, low-level features) to construct a 
theoretically valid distribution; finally, establish pairwise comparisons based on these 
signatures. Each signature constitutes the content description of a corresponding image. It is 
summarized based on pixel attributes and provides a representation of the image in a 
multidimensional feature space. There, a proper (dis)similarity measure is defined in order 
to act as a general rule for comparing any given pair of images. 
In these directions, several (dis)similarity measures have been developed and used as 
empirical estimates of the distribution of image features, confirming that distribution-based 
measures exhibit excellent performance in all areas (Rubner et al., 2001). In the context of 
visual image similarity, we make use of a nonparametric test from the field of multivariate 
statistics that deals with the “Multivariate Two-Sample Problem”, originally presented by 
Friedman and Rafsky (1979). The specific test is a multivariate extension of the classical 
Wald-Wolfowitz test (WW-test) and compares two different samples of vectorial 
observations (i.e. two sets of points in RP) by checking whether they form different branches 
in the overall minimal spanning tree (MST) (Zahn, 1971). It provides an aggregate gauge of 
the match between color images, taking into consideration all the selected characteristics, 
while alleviating correspondence issues. The output of this test can be expressed as the 
probability that the two point-samples are coming from the same distribution. We have 
proven that this is a powerful measure for image similarity, relying on the statistical 
comparison of content representations in a properly defined feature space (Theoharatos et 
al., 2005). 
Here, the above distributional-‘metric’ is introduced in conjunction with a prototyping 
method that dramatically speeds up the execution of the involved computations and results 
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in an efficient overall methodology (e.g. so as to be used in highly demanding applications 
such as image retrieval tasks). The current proposal incorporates the use of a computational 
intelligent module for content representation based on self-organizing neural networks 
(SONNs), the Neural-Gas algorithm (Martinez et al., 1993), which is responsible for 
generating a parsimonious description of the color distribution of each image. The 
multivariate distributions representing the individual images are then compared via the 
standard WW-test, providing enhanced performance when evaluated via a query-by-
example image retrieval scheme (Theoharatos et al., 2006a). 
Finally, we are discussing the applicability of the same distributional distance in order to 
compare images following a standard JPEG-format (Wallace, 1991) and with the scope to 
emphasize texture characteristics during the visual search. Color and texture features are 
directly extracted from the DCT-compressed domain, in the form of an ensemble of feature 
vectors that are the inputs to a standard WW-test. The emerging indexing scheme is found 
to be robust, providing invariant similarity results when image rotation is considered 
(Theoharatos et al., 2006b). 

2. Background and related work 

Research on image similarity has expanded lately, mainly due to the increased interest of 
content-based image retrieval (CBIR), which constitutes a highly challenging research area 
with the emerging techniques sharing many advantages (Smeulders et al., 2000). Even 
though the focus of interest for image similarity and retrieval has recently shifted towards 
the identification of high-level semantics from the content of the images (Eakins, 2002), not 
much success has been achieved so far. This is mainly due to the great difficulties in the 
derivation of semantically meaningful information at a general level (Sheikholeslami et al., 
2002). As a consequence, nowadays methods are still constrained to use low-level visual 
features such as color, shape and texture to represent the image content. 
Considerable investigation has been carried out on the basis of color content (Schettini et al., 
2001). Color information has been recognized as the most important indicator of the general 
‘mood’ of an image and is considered to capture, to a certain extent, image semantics. In the 
existing literature, researchers have experimented with different color spaces such as RGB, 
CIE-Lab, etc. (Castelli & Bergman, 2002), various color descriptors such as color histogram 
(Swain, & Ballard, 1991), color moments (Stricker & Orengo, 1995) and chromaticity 
moments (Paschos et al., 2003), and also miscellaneous similarity measures such as 
histogram intersection (Swain & Ballard, 1991), quadratic form distance functions and 
statistical indices (Rubner et al., 2001). The most popular representation of color information 
is the global histogram, which statistically denotes the joint probability of intensities of the 
three-color channels, thus describing the global color distribution in an image. In general, 
the color histogram provides useful clues for the subsequent expression of similarity 
between images, due to its robustness to background complications and object distortion. 
Moreover, it possesses translation, scale and rotationally invariant characteristics. A 
profound number of (dis)similarity measures have been proposed for computing the 
distance between histograms from two different images. In their work, Rubner et al. (2001) 
distinguished these measures generally into four categories: heuristic histogram distances, 
nonparametric test statistics, information-theory divergences and ground distance ones. In 
the context of image indexing and retrieval, the different variants of the color histogram-
related methodology have provided satisfactory results, especially in practical situations in 
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which the feature extraction step needs to be accomplished as simply and promptly as 
possible. Soon it became popular, since it was very simple to implement and exhibits fast 
retrieval response time, making it a good candidate for real-time applications. However, the 
performance of this technique was not found to be high enough, mainly due to the 
necessary trade-off during the binning procedure. An adequate compromise could be 
achieved via the use of an adaptive binning procedure (e.g. Leow & Li, 2004), in which the 
histogram bins would adapt to the actual distribution of colors in images. Apart from the 
facts that bin-adaptation can be a computational demanding task and, in general, is still 
considered an open issue in the field of image processing, existing systems adopt fixed-
binning histograms since most dissimilarity measures are unable to cope with histograms 
build over different sets of bins (Rubner et al., 2001). 
In order to overcome the above limitation, an attempt was made recently by Rubner et al., 
(2000) to combine the benefits from the use of a distribution distance with a flexible 
description of color-content that adapts its resolution to individual images. The innovative 
work mentioned above introduced the Earth Mover’s Distance (EMD), a computational 
demanding task based on the solution of the well-known transportation problem. In 
summary, a representation scheme suitable for color distributions and based on Vector 
Quantization (VQ) preceded the computation of EMD between pairs of distributions. In this 
scheme, after the complicated k-d trees algorithmic procedure for cluster analysis, each 
distribution was represented by means of a number of cluster-centroids and the 
corresponding proportions of image pixels with colors within the identified groups. The 
EMD-related technique was shown to be more robust than histogram-matching techniques, 
since it could operate on variable-length representations of the distributions that were 
avoiding quantization problems related with the binning procedure. In short, higher 
performance was achieved at the expense of computational efficiency. However, the 
integrated representation design is not related directly to the reliability of color distribution. 
Although the efficiency of k-d tree algorithm is generally recognized, their effectiveness for 
clustering data of complex distributions or data with high correlations among variables is 
questionable. Moreover, there is lack of supporting evidence in the field of statistics that 
EMD is indeed an appropriate measure for comparing multivariate distributions, apart from 
the theoretical benefit that correlates with perception when applied in the CIE-Lab space. 
In the context of textural features, these are also represented using histogram-based 
methodologies. Indexing, similarity and retrieval of compressed images have recently 
become a very active research area, since the great amount of digital images provided on the 
WEB are stored in JPEG format (Wallace, 1991). In particular, the JPEG compression 
standard applies DCT transform in order to achieve a large amount of compression, 
significantly reducing the image size. Such compression is suitable for Internet-based 
applications, reducing the storage space while increasing the downloading speed. Thus, 
measuring image similarity directly in the compressed domain becomes more and more 
beneficial, compared to the pixel-based one. To bridge the gap between compressed- and 
pixel-space, where the majority of image processing algorithms are developed, recent 
research is now starting apace to develop content feature extraction algorithms working 
directly in the compressed domain (e.g. Zhong & Jain, 2000; Ngo et al., 2001; Jiang et al., 
2004).  Since the inverse DCT (IDCT) is an embedded part of the JPEG decoder and the DCT 
itself is one of the best filters for feature extraction working directly on the DCT domain, it 
has proven to be a well-promising area for image similarity in the compressed domain. DCT 
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has, to a certain extent, unique scale invariance and zooming characteristics, which can 
provide insight into objects and texture identification (Ngo et al., 2001). In addition, it 
exhibits a set of good properties such as energy compaction and image data decorrelation 
and, therefore, is naturally considered to be a potential domain in mining visual 
information. Thus, direct feature extraction from DCT domain can provide better solutions 
in characterizing the image content, apart from its advantage of eliminating any necessity of 
decomposing an image and detecting its features in the pixel domain (Jiang et al., 2004). 
The rest of the presentation is organized as follows. Section 3 provides an overview of the 
proposed distributional-‘metric’ for comparing multivariate data, including the graph-
theoretic framework of MST and the multivariate WW-test. Color image similarity is 
presented in Section 4, using the Neural-Gas network for expressing the image content-
signature. In Section 5, visual similarity in the compressed domain is analysed by extracting 
color and texture attributes directly from the DCT-space. Finally, conclusions are drawn in 
Section 6, along with an outline of our future research objectives in Section 7. Throughout 
our study, image similarity is evaluated via a query-by-example image retrieval scheme 

3. The Distributional ‘Metric’ for Comparing Multivariate Data 

A nonparametric test dealing with the “Multivariate Two-Sample Problem” (Friedman & Rafsky, 
1979) is proposed for measuring image similarity in a reliable and more sophisticated way. 
The specific test is a multivariate extension of the classical statistical test of Wald and
Wolfowitz and compares two different samples of vectorial observations (i.e. two sets of 
points in RP). The output of the test can be expressed as the probability that two point-
samples are coming from the same distribution. Its great advantage is that no a-priori 
knowledge about the distribution of points in the two samples is a prerequisite (Theoharatos 
et al., 2005). This model-free assumption stems from the graph-theoretic origin of the WW-
test, which is actually based on the concept of the MST-graph (Zahn, 1971). For this reason, a 
compact description of MST is preceded first. 

3.1 MST-Graph Representation 

Given the establishment of a systematic procedure for extracting low-level characteristics 
from a color (or multivariate, in general) image that are individually represented as vectors 
in a predetermined space, one can rely on graph theory to provide a collective perspective 
that captures the essence of the visual content of the image under study. Graph theory, by 
putting emphasis on the structural relationships between the extracted characteristics, 
provides robust descriptions against noise degradation widely and randomly spread over 
the field and simple transformations like image scaling. Specifically the MST-graph appears 
as an extremely useful condensation of the bulk of information conveyed within the 
ensemble of image characteristics. In addition, the MST provides a compact description of a 
point set. It contains the ‘nearest neighbor’ information about each point and the ‘shortest 
linkage’ information about subsets of points (Laskaris & Ioannides, 2001). In his study, Zahn 
(1971) established another advantage of MST, the determinacy, meaning that the results from 
the application of a method working with MST-graph do not depend on random choices or 
the order in which points are scrutinized, but are affected solely by the point set provided as 
input. Overall, the MST structure is unchanged under transformations like translation, 
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rotation and non-linear ones, preserving the ordering of edge lengths (Theoharatos et al., 
2005).
Graph theory sketches the MST structure with the following definitions (Zahn, 1971). A 
graph ( )EVG ,  is a mathematical structure for representing pairwise relationships among 
data. It consists of a set of points called nodes { } NiiVV :1==  (or vertices) and a set of links 

{ } ji≠= ijEE  between nodes called edges (or lines). An edge links two nodes defining it, when 
it is incident on both of them. The degree id  of a node is the number of edges incident to it. 
When a weight ije  is assigned to each link, a weighted-graph is formed and in the particular 
case that jiij ee =  this graph is called undirected weighted graph. A connected graph has a path 
between any two distinct nodes and a tree is a connected graph with no cycles. A subgraph of 
a given graph is a graph with all of its nodes and edges in the given graph. A spanning tree T
of a (connected) weighted graph ( )EVG ,  is a connected subgraph of ( )EVG ,  such that: (i) it 
contains every node of ( )EVG , , and (ii) it does not contain any cycle. The MST is a spanning 
tree containing exactly 1−N  edges, for which the sum of edge weights is minimum. 
Suppose now that −N pixels are randomly selected from an image and the corresponding 
RGB vectors are represented as an ensemble of points in the feature space. The specific 
points are used as the nodes of the original (fully-connected) graph, while the interpoint 
Euclidean distances as the weights of the corresponding edges. Using a standard algorithm 
(Prim, 1957), the MST is evolved from the original graph, offering a parsimonious 
description of the low-level information in an image. Given a second image, the color 
content of which is to be compared with the content of the first one, we can proceed with the 
selection of pixels as previously and transform the comparison between feature-contents 
into a comparison between the corresponding MST-graphs (Theoharatos et al., 2005). To 
perform such a comparison, a well-defined statistical test is available in the literature of 
multivariate statistics. 

3.2 The Multivariate WW-Test 

Consider samples of size m and n respectively from distributions xF  and yF , both defined in 
RP. The hypothesis 0H  to be tested is whether they are coming from the same distribution, 
thus yx FF = . We are interested in the rejection of the original hypothesis, which is the 
alternative hypothesis yx FF ≠ . In the univariate case ( 1=p ), the WW-test begins by sorting 
the nmN +=  univariate observations in ascending order. Friedman and Rafsky (1979) 
proposed the use of MST as a multivariate generalization of the univariate sorted list, 
introducing in this way a methodology to define the two-sample test statistics based on the 
MST in analogy with those based on the sorted list. 
In the multivariate case, the hypothesis 0H  to be tested is whether two multidimensional 
point samples { } miiX :1=  and { } niiY :1=  are coming from the same multivariate distribution. In 
this general case, the WW-test can be summarized with the following steps (Friedman & 
Rafsky, 1979): (i) Consider samples of size m and n respectively from distributions xF  and 

yF , both defined in RP, (ii) Construct the overall MST without encountering the sample 
identity of each point (iii) Delete the edges for which the defining nodes originate from 
different samples. Then, based on the sample identities of the points the test statistic R  is 
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computed, defining the total number of runs, while a run is defined as a consecutive 
sequence of identical sample identities. R  can be also defined as the number of disjoint 
subtrees that finally result. In order to illustrate the WW-test for ease in understanding, two 
randomly selected samples of size 5=m  and 8=n  are used in the 2-D of Fig. 1. After 
deleting those edges coming from different distribution, the number of disjoint subtrees is 
calculated and found equal to 5=R . It must be pointed out here that, the MST possesses 
two significant properties which make it appropriate for application to the multivariate two-
sample problem (a) it connects all the −N nodes with 1−N  edges, which comes from the 
fact that the MST is a spanning tree and (b) the node pairs defining the edges represent 
points that tend to be close together, which stems from the requirement that the sum of the 
edge weights is minimum. 

(i) (ii) (iii)

Fig. 1. Visual configuration of the multivariate WW-test algorithmic procedure for two 
randomly sampled distributions: (i) consider the two sample-distributions, (ii) construct the 
overall MST and (iii) delete the edges of the nodes originating from different distributions. 

The null distribution of the test statistic is derived, based on the combinatorial analysis 
given by Friedman and Rafsky (1979). Let nmN += , C be the number of edge pairs of MST 

sharing a common node, and id  be the degree of the ith node. Then, ( )
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It has been shown that the quantity: 
[ ]
[ ]RVar
RERW −=  (2) 

approaches (asymptotically) the standard normal distribution while [ ]RE  and [ ]RVar  are 
given in closed form based on the size of the two samples (Friedman & Rafsky, 1979). The 
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importance of the previous is that by using simple formulae, the significance level (and p-
value) for the acceptance of the hypothesis 0H  can be readily estimated. 

4. Comparing Color Distributions via a self-organizing algorithm 

Regarding the plethora of methods and feature extraction techniques, image indexing and 
similarity is associated with different levels of image understanding. Provided that a 
number of feature vectors are given, the resulted feature space may not be uniformly 
occupied. Sheikholeslami et al. (2002) studied the way clustering individuates the sparse 
and dense pixel-areas in the image, revealing the underlying distribution of the feature 
space. In addition, a vector quantization scheme realizes a concise representation of the 
input data regardless of the actual meaning and significance of the clusters (Gdalyahu et al., 
2001). The resulting codebook vector can be considered as a compact description of the data 
distribution (e.g. the color information of database images), providing effective and 
alternative ways to portray image content. 
To avoid missing the generality of the approach and at the same time propose its 
efficient/intelligent version, the use of two sequential modules is illustrated in the specific 
domain of color image information management, which considers the RGB-vectors 
corresponding to individual pixels (i.e. points in R3). In a nutshell, using Neural-Gas based 
prototyping a data-summary will be produced, which constitutes a meaningful sampling 
from the underlying color distribution of each image. With the subsequent application of 
WW-test to compare samples of color prototypes, robust and economical comparisons 
regarding color content will be achieved (Theoharatos et al., 2006a). 

4.1 Representation of Color Distributions via Self-Organizing Networks 

Summarizing data distributions via prototypes has roots in the theory of VQ, which is a 
powerful strategy for data compression and can be accomplished via different techniques 
(Gray, 1984). Briefly, a vector quantizer encodes a data manifold V ⊆ RP utilizing only a 
finite set of reference or “codebook” vectors ∈jO RP , kj ,,1= , which are also called 
cluster centers. Each data vector ∈X  V is described by the best-matching reference vector 

( )XjO  for which the distortion error ( )( )XjOXd , , usually measured via the squared Euclidean 
distance, is minimal. The main core of the procedure depends on the division of the original 
manifold V into a number of subregions Vi called Voronoi polygons or Voronoi polyedra, 
out of which each data vector X  is described by the corresponding reference vector jO . The 
efficient application of VQ mainly depends on the codebook design, i.e. the proper selection 
of reference vectors. For this critical step, the use of traditional clustering algorithms like the 
k-means had been originally proposed. However, it was experimentally verified later that 
these algorithms often lead to a suboptimal choice of reference vectors jO  in the case of 
nontrivial data distributions, as well as in the case of an inappropriate selection for the 
number of reference vectors. Such a suboptimal solution can have a significant impact on 
the subsequent encoding of the data and even result to highly distorted representations. 
The tremendous development of neural theory of unsupervised learning and the related 
algorithms of Self-Organizing Neural Networks (SONNs) revitalized the field of VQ. The 
ability to efficiently deduce prototypes from the data, common in many SONNs like the 
Kohonen’s feature map (Kohonen, 1997) and the Neural-Gas (Martinez et al., 1993), could be 
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exploited in the reliable codebook design. For a thorough treatment of SONNs and their 
applications related with VQ, the interested reader can refer to the seminal study of 
Martinez and Schulten (1994). 
Stochastic presentation of the input data, competition among the neural nodes (to which 
weight vectors ∈jA RP have been assigned) and a ‘soft max’ adaptation rule are the 
common characteristics of these networks that guarantee the fast convergence to a set of 
weight vectors (i.e. prototypes), which can serve as a high-fidelity codebook. The resulting 
codebook vectors are allocated according to the probability distribution of data vectors over 
the manifold V, and in such a way that the average distortion error is minimized. The main 
difference between the SONN-algorithms compared to other traditional clustering 
methodologies is that not only the best-matching reference vector ( )XjO  is adjusted every 
time a data vector X  is presented, but also the reference vectors adjacent to it are updated 
accordingly. Among the SONNs, Kohonen’s feature map is the most popular mainly due to 
the accompanying visualization scheme that enables the projection of the input data 
nonlinearly onto a lower dimensional lattice (Kohonen, 1997; Haykin, 1999). Inspired by the 
possibility that some high level organization in the brain may be created during learning 
through self-organization, Kohonen (1997) presented a self-organizing learning algorithm 
that presumably produces feature maps similar to those occurring in the human brain. In 
this way, the self-organizing map (SOM) forms a nonlinear regression of the ordered set of 
reference vectors into the input space. The reference vectors constitute a low-dimensional 
network that follows the original data distribution; for this reason, it is also referred to as 
‘self-organizing semantic map’. However, to obtain efficient quantization results with 
Kohonen’s feature map algorithm, the topology of the lattice has to match the topology of 
the data manifold V that is to be represented. Since the primary interest in our study lies in 
the precise quantization of the data and not in dimensionality reduction, we avoided the use 
of Kohonen’s network. Instead, we resorted to Neural-Gas network, which had been proven 
to quickly converge to distortion-errors lower than the ones achieved using Kohonen’s 
algorithm or other classical clustering algorithms (Martinez et al., 1993). 

4.2 The Neural-Gas Algorithm for Vector Quantization 

For the purposes of vector quantization, the Neural-Gas algorithm is presented in this step 
and utilized in the dual segregation algorithmic procedure for our efficient image similarity 
methodology. It is a neural network algorithmic procedure that sustains specific properties 
that make it appropriate as a feature extraction scheme: (1) it converges quickly to low 
distortion errors, (2) it reaches a distortion error much lower than the corresponding using 
the K-means clustering and other traditional techniques or the one resulting from the SOM-
approach, and (3) it obeys a gradient descent on an energy surface, in contrast to the 
Kohonen’s feature map network (Martinez et al., 1993). 
In the Neural Gas network algorithm, a stochastic sequence of incoming data vectors ( )tX ,

max,,2,1 tt = , which is governed by the distribution ( )XP  over the manifold V, drives the 
adaptation step for adjusting the weights of the k neurons { }

kjjA
:1=

 (i.e. the reference vectors) 

( ) { }( )( ) ( )( ) max:1 ,,1,,,1,, ttkjAtXAtXfhA jkiijj =∀=−=Δ =λε  (1) 



Image Similarity based on a Distributional “Metric” for Multivariate Data 341

The function ( )yhλ  in the above equation has an exponential form λye−  and { }( )iAXf ,  is 
an indicator function that determines the ‘neighbourhood-ranking’ of the reference vectors 
according to their distance from the input vector X. For both parameters ε and λ, an 
exponentially decreasing schedule is followed, with maxt  being the final number of 
adaptation steps that can be defined from the data based on simple convergence criteria (for 
analytical details refer to Martinez et al. (1993), see also Martinez & Schulten (1994)). 
Martinez et al. (1993) mathematically proved that the asymptotic density distribution of the 
codebook vectors ( )AP  was proportional to the data density ( ) ( ) ( )2+∝ ddXPAP , where 

dd ≤  is the intrinsic dimension of the input data. This theoretical proposition along with the 
accompanying experimental evidence, showing that the Neural-Gas network is indeed 
capable of representing successfully data-manifolds with even intricate intrinsic geometries 
(Martinez & Schulten, 1994), motivated our conjecture that the designed codebook could 
serve as a faithful representation of the vectorial distribution in color-space. Therefore, it 
could be utilized in the subsequent comparisons regarding color content. 
Fig. 2 illustrates the color-content representation through Neural-Gas prototypes, which 
clearly evidences that the distribution of the codebook vectors follows very closely the 
corresponding color distribution (Theoharatos et al., 2006a). In the depicted figure, three 
images are included (two of which “look similar” to each other), while their RGB 
distributions corresponding to all the pixels are shown in the left column along with their 
representations using the associated codebooks. In addition, the entire set of pixels 
comprising each RGB-image is presented as a black dot-swarm. It is clearly evident that the 
distribution of the codebook vectors follows very closely the corresponding color 
distribution. Therefore, each codebook can be thought of as a properly “down-sampled” 
version of the original RGB-distribution (Laskaris & Fotopoulos, 2004). Aiming at higher 
computational efficiency, an intermediate step of subsampling has been introduced between 
embedding an image in RGB-space and Neural-Gas based prototyping. Within this step, 
only a small portion (~5 %) of the pixels in the image is selected using uniform random 
sampling, and the associated vectors are used as input data to the neural network. The 
comparison of the codebooks designed with (right column) and without (left column) the 
subsampling step, shows only slight differences. 

4.3 Comparing Color Signatures using the WW-test 

In order to assess the similarity between two color images, the WW-test is utilized as 
follows. Provided the two color codebooks { } k:1i=iA  and { } k:1i=iB  extracted from a pair of 
images, the WW-procedure follows, with the extracted prototypes playing the role of the 
input point-samples { } m:1i=iX  and { } n:1i=iY  respectively. W  is computed based on the 
involved codebook vectors and used as a similarity measure in a way that the more positive 
its value is, the more similar the color distributions in the two images are (Theoharatos et al., 
2005). The −W quantity computed between pairs of images plays the role of a 
“distributional distance” and therefore inherits interesting invariant-characteristics. In the 
past, a few other statistical indices have been proposed, as well, as means of measuring 
similarity between color distributions. These distances, for instance the Kolmogorov-
Smirnov distance (KS), the chi-square test ( 2-statistic), etc. (Rubner et al., 2001), measure 
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how unlikely it is that one distribution is drawn from the population represented by the 
other.

prototypes

prototypes

prototypes

Fig. 2. Codebook color representation based on the Neural-Gas algorithm. For each image, a 
point-distribution is formed using the RGB-vectors corresponding to all (left panel) or a 
small portion (right panel) of the pixels, summarized through 12 prototypes. 
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Fig. 3 provides a demonstration of the test performance using the images and the codebooks 
presented in Fig. 2. In both panels different labels are associated with each of the two images 
to be compared. The 12=k  color prototypes extracted from each image are located in the 
RGB-space and the points indicating their position have been labeled according to the image 
they are coming from. By contrasting the two MSTs, it becomes evident that in the case of 
similar images (Fig. 3a) there are many edges having different labeled nodes as endpoints, 
while only a few in the case of dissimilar ones (Fig. 3b). 
The unique benefit of WW-approach is that since it engages “distributional distance” acting 
on samples of image constituents, the emerging similarity measure possesses desirable 
invariant characteristics, such as rotation and translation invariance. Part of the flexibility is 
due to the statistical nature of the core procedure, the WW-test, and specifically its 
multivariate orientation. Theoharatos et al. (2005, 2006a, 2006b) have shown that not only 
different image characteristics can - in principle - be combined naturally in one type of 
query (i.e. color plus texture features), but also different types of queries can evolve 
independently and their results can be compared across types, as in the case of an image 
retrieval system. The latter is a direct consequence of the fact that the measured W-index 
relates directly to significance level and therefore can be used as an absolute measure to 
rank among the results of different types of query. Under these perspectives, the WW-test 
can be directly incorporated in retrieval processes from large image libraries, with the great 
advantage of being suitable for dealing with multivariate distributions. 

4.4 Experimental evaluation via a query-by-example image retrieval scheme 

In order to demonstrate and validate the effectiveness of the proposed methodology, a 
query-by-example image retrieval system was built. The image database included in the 
retrieval scheme contains a subset of 1000=D  color images from the Corel Collection. The 
utilized image-set was formed by pre-assigning the images into 20 distinct classes of 50=S
semantically similar images. A subset of 60=Q  query images from this heterogeneous set 
was also included in our retrieval system (three images per category). For the evaluation of 
the retrieval results, the precision (Pr) and recall (Re) indices (Castelli & Bergman, 2002) were 
adopted.
In the introduced methodology, the results are coming from different settings of the 
involved parameters. For different codebook sizes, the Precision was computed as a 
function of the number of RGB-vectors randomly sampled from each image and used as 
input data to the Neural-Gas network. The graphs obtained in this way showed that the Pr-
index approached a relatively high value very soon (~1% of the pixels) and remained 
practically constant beyond the number of approximately 5% of the pixels (Theoharatos et 
al., in press a), which was the typical value chosen used throughout our evaluation study. In 
addition, by experimenting with the size of codebook vectors k that need to be drawn from 
each color image, extensive measurements have confirmed that after extracting 25=k
prototypes the Pr-index remained almost constant (Theoharatos et al., in press a). These 
results show that our method reaches the maximum performance for a moderate size of 
codebooks ( 25≈k ) and therefore a more detailed representation of color distribution is 
unnecessary. This observation is very important for finding the best trade-off between 
effectiveness and efficiency when applying our algorithmic procedure. 
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Fig. 3. WW-test for a pair of similar images (a) and dissimilar images (b), based on the k=12 
color prototypes shown in Fig. 2. In the top panel, there are 19 edges having differently 
labeled nodes as endpoints and therefore splitting the overall MST into 20 subgraphs, thus 
R=20 (W=2.6523). On the contrary there are only 2 such edges in the bottom panel, thus R=3 
(W=-4.8361).

For the full justification of our proposal, precision measurements regarding query-by-
example search in the specific database are included. A plot of Pr-index as a function of the 
codebook size k is presented in Fig. 4, for the 10=T  top retrieved images of the selected list. 
The performance of the Neural-Gas based WW-test is compared to the one using the EMD-
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metric (Rubner et al., 2000) when applied upon the corresponding Neural-Gas based color-
signatures. Although the depicted curves follow - as theoretically expected - a relatively 
similar trend, the WW-test outperforms the EMD-measure; for 10=k  a satisfactory 
improvement of ~5% is apparent, while for 15≥k  a significant increase in performance 
(~10%) is depicted. In addition, the general trend of the depicted curve is very interesting. 
The Pr-index reaches a plateau pretty soon and remains almost constant above the codebook 
size of 25=k . This observation is of great importance regarding the involved computational 
load of our method and will be discussed in the last Section. The slightly decreasing trend 
that becomes apparent after the size of 40=k  is a by-product of the fact that the number of 
extracted codebook vectors is increased without increasing the number of sampled vectors 
from the image. Therefore the Neural-Gas network attempts a detailed representation that is 
adapted to the idiosyncrasies of the random sample and tends to capture stochastic 
variations as delicate data-structure (a common-place problem in neural networks, usually 
referred to as over-training). By experimenting with greater sample sizes (~10% of the 
pixels), this trend is drastically reduced. 
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Fig. 4. Precision measurements of the WW-test and the EMD-related metric based on the 
same color codebooks, as a function of codebook size k. 

The performance of the hybrid methodology as a method for accessing image databases was 
also evaluated following the standard procedure of constructing the Precision vs. Recall 
diagram. The Pr- and Re- indices were first evaluated for different sizes T of the selected list 
(for 30:5:5=T ), and the computed values were used in the plot of Fig. 5. The 
corresponding diagrams for other dissimilarity measures (HI, 2-test and JD using color 
histograms introduced in Rubner et al. (2000) and EMD applied on color signatures 
presented in Rubner et al. (2001)) have also been included in the same figure, enabling the 
direct comparison of the different approaches. It is clearly obvious that the WW-engine 
significantly outperforms all other methodologies. 
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Fig. 5. Precision vs. Recall diagrams for the new hybrid approach, in comparison to other 
related techniques. 

5. Visual similarity in the compressed domain 

The flexible character of the WW-methodology relies on the multivariate flavour of the core 
statistical procedure. By altering the feature-extraction implementation, complementary 
ways to portray the image content appear without scaling effects or different cardinalities of 
the feature sets. An attempt is described here to adopt our methodology so as to work in 
compressed image domains that have recently gained high popularity (e.g. Zhong & Jain, 
2000; Ngo et al., 2001; Jiang et al., 2004). This is expected not only to increase the efficiency of 
WW-based similarity scheme - by avoiding image decompression -, but also to constitute it 
suitable for novel applications like searching and retrieval in the World-Wide-Web - since 
the images of the Web are mostly included in a standard compressed format - (Jiang et al., 
2004). Within this part we focus specifically on images from the standard JPEG compression 
scheme (Wallace, 1991). Competent ways to extract feature vectors directly from the zig-zag 
DCT-coefficients of the images are explored and their effectiveness is studied when 
exploited within the general framework of WW-methodology (Theoharatos et al., 2006b). 
Color and texture features are utilized directly from the DCT-domain in the form of an 
ensemble of feature vectors represented in the YCrCb tri-chromatic model, in line with the 
JPEG standard (Wallace, 1991). In order to represent color information from each NN ×
pixel-block of a given image, all DC components are separately extracted and used as input 
vectors in the WW-engine to form a 3-D vector space. Texture features, on the other hand, 
can be defined as the spectrum energies in different localizations of a local block. Since the 
DC coefficient 0,0F  represents the average grayscale value of each NN ×  macroblock, it is 
not considered to carry any texture information. The remaining AC coefficients can be 
considered to characterize image texture and be used as texture features. Zhong and Jain 
(2000) pointed out that even though the DC component is used for color feature 
characterization and the remaining AC components for texture features, color and texture 
attributes are mixed together in the ( ) 1−× NN  coefficients contained inside a pixel-block. 
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Most of the times, it is extremely hard to draw an absolute line between color and texture 
attributes, since color variation results in color texture. In this way, color is expected to be 
present at several AC coefficients, packing most of its spectral energy in the fewest number 
of low-frequency coefficients at the upper left corner of the macroblock. Zhong and Jain 
(2000) proposed to compute the absolute values of the AC coefficients, selecting those M
lowest-frequency features carrying most of the energy. By rotating an image-block, the 
absolute values of the set of contained DCT coefficients remains unaltered, but their position 
along each zig-zag line is changed. However, by computing the distance between the 
corresponding matrices for the initial block and its rotated version, a totally false alarm is 
resulted in accordance with their perceptual similarity. 

Fig. 6. DCT coefficients in the case of an image macroblock im(A) and its rotated version 
im(B). Each diagonal line of the zig-zag scheme is considered as a vector. The corresponding 
vectors (gray-shaded) contain AC coefficients having equal absolute value, although they 
are located at different positions. However, their magnitudes are the same, as provided at 
the bottom panel. 
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In this section, an efficient indexing method is outlined (Theoharatos et al., 2006b). 
Primarily, −k vectors are extracted from the diagonal zig-zag coefficients of each block, 
where a vector is defined by the AC components contained inside each diagonal line of the 
zig-zag scheme. The −k magnitudes kV , 22,,2,1 −= Nk  of the corresponding zig-zag 
vectors are computed in the sequel, from 1Z  to kZ  (in the case of 88×  image block, 14=k
as presented in Fig. 6). This representation has been proven to be robust to image geometric 
transformations. That is, by applying the DCT transform to an image block and its rotated 
version, the set of the absolute values of the DCT coefficients is identical, whereas their 
positions in the zig-zag ordering scheme are different (Theoharatos et al., 2006b). This 
obvious advantage is illustrated in the example of Fig. 6, where an image block of size 88×
is extracted along with its 90o right-rotated version and labeled im(A) and im(B) respectively. 
By applying the DCT transform to both initial and rotated image block, the set of the 
absolute values of the DCT coefficients is identical, but their positions are different in the 
zig-zag ordering scheme (depicted by the shaded lines in both matrices). Estimating the 
simple Euclidean distance between the corresponding zig-zag vectors of im(A) and im(B)
using the proposed methodology, it was apparently found to be zero. 
A critical issue that has to be solved is the number of selected AC components that need to 
be extracted from each image block, so as to represent effectively and efficiently the color 
and texture attributes. Owing to the very nature of the DCT, the set of AC coefficients 
generated for each NN ×  block are considered approximately uncorrelated. For an NN ×
pixel-block, the general intention is to choose those −M features out of the total number of 

2N  DCT coefficients (except from the DC component that is always chosen as color 
attribute) that capture most of the spectral energy, while in our case, to select −k vectors out 
of the 12 −N  ones estimated inside an image block. The number of selected texture and 
color-texture features must be extracted separately from each image channel. By testing with 
several JPEG images and using standard statistical methods (Duda et al., 2001) such as 
entropy estimation, the number of extracted zig-zag vectors was approximately found to be 

3=k , therefore using the first three zig-zag vectors. It should be noticed here that the 
extraction of color and texture features (i.e. the DC component and the −k zig-zag vectors) 
from each chromatic frame, increases the dimensionality of the derived feature space. 
However the computational complexity is not increased due to the fact that the WW-test is a 
function of the number of input vectors and not of their dimensions. On the other hand, the 
similarity measure is optimized by the higher number of extracted image features. 
Additionally, the optimal number of extracted vectors from the Y- frame was experimentally 
found to be 8, increasing the dimensionality of the feature space to 16 (8-dimensions for the 
luminance Y-frame and 4-dimensions for each of the two chrominance channels). 
The performance of the proposed indexing scheme was evaluated on the same query-by-
example retrieval system, using the WW-test as the similarity measure and following the 
standard procedure of constructing the Precision vs. Recall diagram. The Pr- and Re-indices 
were first evaluated for different sizes T of the selected list ( 50:5:5=T ) and the computed 
values were used in the plot of Fig. 7. The corresponding curves for the other techniques 
presented earlier have also been included in the same figure. In all curves, the same number 
of color and color-textures features has been extracted from each image macroblock, 
enabling the direct comparison of the different approaches. As we can perceive, the 
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proposed methodology outperforms all other techniques, having in all cases of the selected 
list T of retrieved images significantly higher precision rate. 
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Fig. 7. Precision vs. Recall diagrams for the proposed compressed-domain retrieval scheme, 
in comparison to other related techniques also applied using the same indexing scheme in 
the compressed domain. 

6. Conclusions 

An intelligent strategy to visual information similarity is introduced based on the use of the 
nonparametric multivariate Wald-Wolfowitz statistical test. Our approach relies on a dual 
segregation-integration algorithmic step. The set of low-level characteristics is extracted in 
the form of an ensemble of feature-vectors and then ‘set-differences’ are computed between 
pairs of image representations. The new method is built on firm mathematical concepts, 
providing us with all the practical advantages of employing a suitable distributional 
distance. Its intelligent character stems from the fact that by altering the involved visual 
information, we can modify the flavour of formulated queries. By measuring the 
performance of the proposed distributional measure using some pre-defined feature 
extraction procedures, we show that it outperforms previously related ones that are 
considered as classical approaches for image similarity. The suggested methodology is 
evaluated within a query-by-example image retrieval scheme. 
The only seemingly weak point of the proposed scheme is that it relies on the formation of 
MST, which is known to be a computationally demanding procedure. To provide some 
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insight about the complexity, the MST construction requires computational time O(N2) using 
a standard algorithm (Laskaris & Ioannides, 2001), while the test statistic can be evaluated in 
time O(N), where N is the number of involved data points. The selection of a small number 
of input feature vectors can alleviate the computational load of the WW-engine and is fully 
justified by the presented experimental results. These results show that our method reaches 
the maximum performance for moderate size of visual attributes and therefore a more 
detailed distributional representation is unnecessary (Theoharatos et al., 2006a; Theoharatos 
et al., 2006b). Apart from this experimental fact, it should be noticed that, nowadays, the 
theory of randomized algorithms (Motwani & Raghavan, 2000) provides alternative fast 
approximations to the MST construction problem. Using such algorithms, the efficiency of 
the presented method might improve further. 

7. Future trends 

Future research remains to examine different/advanced representations of image content so 
as to be embedded in the WW-engine. For instance, blob representations of images 
emerging from a context-dependent segmentation algorithmic procedure could be 
incorporated in the retrieval scheme, also done within the EMD-framework (Greenspan et 
al., 2004). In this way, we will able to compare images that are considered to be semantically 
more relevant and which require the identification of specific types of objects and scenes. 
This can be accomplished by modifying the visual attribute-extraction process from that of 
primitive features (such as color, texture, shape or spatial location of image elements) to that 
of logical features (such as the identity of the objects depicted in an image). The most 
appealing and simultaneously straightforward adjustment is definitely the engagement of 
the recently proposed neuromorphic training scheme (Laskaris & Fotopoulos, 2004) that 
leads to image content representations that are highly relevant to human visual perception. 
The problem of modelling image semantics needs to be systematically examined, so as to be 
incorporated in the standard WW-framework. In this way, techniques that capture the 
semantic meaning of images have to be studied for perceptual categorization and WW-
based similarity of color images, using low-level descriptors derived from high-level 
semantic primitives. Recent research focuses on implementing perceptually motivated 
feature extraction algorithms into real-working environments. In their work, Mojsilovic and 
Rogowitz (2004) performed several subjective experiments in order to understand important 
semantic categories that drive our visual perception and, afterwards, extracted meaningful 
low-level descriptors from these semantic categories in order to perceptually characterize 
the database images. By integrating these features into our WW-engine, enhanced retrieval 
results and better organization of image databases can be achieved (Theoharatos et al., 
2007). Finally, other intelligent methodologies (Eakins, 2002) can be directly adopted in our 
system in order to improve the matching process and also provide the significance level of 
perceptual image similarity using semantically relevant visual attributes. 
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1. Introduction    

Talking about human eye and how its astounding complexity seemingly challenged the 
very laws of evolution, Charles Darwin observed the following while discussing about 
“organs of extreme perfection and complication”, in the Chapter VI titled Difficulties of the 
Theory of his revolutionary work, The Origin of Species:
“To suppose that the eye with all its inimitable contrivances for adjusting the focus to 
different distances, for admitting different amounts of light, and for the correction of 
spherical and chromatic aberration, could have been formed by natural selection, seems, I 
freely confess, absurd in the highest degree. When it was first said that the sun stood still 
and the world turned round, the common sense of mankind declared the doctrine false; but 
the old saying of Vox populi, vox Dei, as every philosopher knows, cannot be trusted in 
science. Reason tells me, that if numerous gradations from a simple and imperfect eye to one 
complex and perfect can be shown to exist, each grade being useful to its possessor, as is 
certainly the case; if further, the eye ever varies and the variations be inherited, as is likewise 
certainly the case and if such variations should be useful to any animal under changing 
conditions of life, then the difficulty of believing that a perfect and complex eye could be 
formed by natural selection, though insuperable by our imagination, should not be 
considered as subversive of the theory. ” 
The purpose of the present chapter would be to understand and explain some of the aspects 
of this highly complicated organ and how it is likely to coordinate with the brain at the stage 
of early vision. Pioneering contributions in this domain came from renowned philosophers 
and vision scientists like Wilhelm Wundt, Hermann von Helmholtz (Helmholtz, 1867) and 
Ernst Mach (Mach, 1865). The British empiricist school of Locke, Hume and Berkeley led to 
the structuralist viewpoint of Wundt and the empirio-critical view of Mach, that defined 
visual perception as a process arising out of certain basic sensory atoms which act as 
primitive, indivisible elements of visual experience spanning each tiny localized region of 
the visual field, presumably resulting from the activity of the individual rods and cones in 
the retina. Analogous to the structural relation between primitive atoms and the more 
complex molecules, this structuralist theory relied upon the concept of gluing together of 
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many simple sensations (like colour) into more complex perceptions of a whole                          
entity.
As a reaction to such mechanical materialist viewpoint arose the Gestalt movement that was 
led by Max Wertheimer who in the guise of rejecting the structuralist viewpoint, actually 
attacked the very base of scientific materialist viewpoint by claiming that perceptions can 
only have their own intrinsic whole structures that cannot, by any means, be reduced to 
parts or even to piecewise relations among the parts. As evidence of holism, Gestaltists 
pointed to those examples in which configurations have emergent properties, not shared by 
any of their local parts. Thus, while the structuralist viewpoint represented an inconsistent 
materialistic approach where “part” assumes the role of almighty and the “whole” is merely 
its follower, the Gestalt school on the other resorted to idealism where “part” is devoid of 
any identity with respect to “whole”. The dialectical relation between part and whole  that 
is the science of transformation of quantity to quality, which is responsible for any emergent 
behaviour was temporarily dissolved in the fog of subjectivism, until the time was ripe for 
the advancement of science and philosophy to free the domain of vision science from such 
cloaks of mysticism. Emerged a new school of vision scientists to whom vision is first and 
foremost, an information-processing task whose study should invariably include not just 
how to extract from images the various aspects of the world that are useful to us, but also an 
enquiry into the nature of internal representations by which we capture this information and 
make it available for processing as a basis for decisions about our thoughts and actions. The 
use of computer simulations to model the cognitive processes, the application of 
information processing approach to psychology and the rapid advancement in 
neurophysiological techniques that led to the emergence of the idea that the eye-brain 
system is a biological processor of information, changed the way in which scientists 
understood vision. The remarkable works of Golgi, Cajal, Adrian, Granit, Hartline and other 
physiologists along with the advent of the modern computer age led by Alan Turing and  
John von Neumann served to establish the fact that starting from the two dimensional 
intensity array formation on the retina to the three dimensional object reconstruction and 
recognition in higher regions of the brain, the entire process is controlled and executed by 
networks of neurons of different types and that there is no “soul” sitting anywhere and 
interpreting things from the neuronal outputs. Rather visual perception is a collective, step-
by-step synchronization of the outputs at various stages in the eye and the brain, no matter 
how complex that process is. It was this approach that led to the notion of a cell’s “receptive 
field” that becomes evident so clearly from the study by H. B. Barlow of the ganglion cells of 
the frog retina where he said (Barlow, 1953): 
“If one explores the responsiveness of single ganglion cells in the frog’s retina using 
handheld targets, one finds that one particular type of ganglion cell is most effectively 
driven by something like a black disc subtending a degree or so moved rapidly to and fro 
within the unit’s receptive field. ” 
The corresponding mathematical approach of creating computer programs to extract useful 
information about the environment from optical images was articulated most effectively by 
David Marr and his colleagues (Marr, 1982). It dealt in details with how the luminance 
structure in two-dimensional images may provide information about the structure of 
surfaces and objects in three-dimensional space, though the pioneering mathematical 
analysis in this field was contributed by the Dutch physicists Jan Koenderink and Andrea 
van Doorn who dealt with sophisticated mathematical techniques from differential 
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geometry to the three dimensional orientation of surfaces from shading information. But in 
this chapter we shall restrict ourselves only to the receptive field structure relevant to the 
Theory of edge detection (Marr & Hildreth, 1980) that, according to its authors, is 
responsible for a “raw primal sketch” of the world around us. For this, we first elucidate a 
few basic things associated with the processing of the digital images by computers, which 
would be extensively used in the present chapter.  

2. Preliminary Concepts in Computer Vision 

An image is a two-dimensional representation of a three dimensional object or scenario. A 
monochrome image is characterised by a continuous intensity function ),( yxI  at every point 

),( yx  in the image plane. The final goal of image processing is to extract information from 
),( yxI  to reconstruct the 3-D view of the original object or scenario. In a digital image the 

abstract concept of points is replaced by a realistic concept of infinitesimal identical areas 
(such as pixels in a computer screen). These infinitesimal areas span the entire image plane 
and are numbered in an ordered fashion both horizontally and vertically. Moreover, the 
continuous intensity function is replaced by values from a discrete gray scale. As a result the 
continuous intensity function ),( yxI  is replaced by a discrete function ),( ii yxI , in 
which ),( ii yx denotes the pixel position and ),( ii yxI denotes the average discrete gray scale 
value of that pixel.  
Let us now discuss the salient points about the concept of an edge. Location of an edge is the 
most crucial information that is to be extracted during the primary processing of any image. 
Any sharp change of intensity qualifies for an edge (Fig. 1a). Accurate detection of these 
transitions along with their correct locations is the purpose of edge detection algorithms. In 
a digital image an edge occurs at the boundary between two pixels provided the gray values 
of the pixels differ considerably from one another.  From the vagueness of the word 
“considerably” it is obvious that identification of an edge is a subjective procedure. In one 
extreme any difference of intensity may be assumed to be an edge, so that the processed 
image would become a messy assemblage of edges leaving no scope for feature extraction. 
In its other extreme, the important edges may get lost thereby forsaking valuable 
information. Sudden transition of a continuous function is best identified by differentiating 
it, which gives a large value at the point of transition and zero value at the points of no 
transition. For a discrete function, the differentiation operation is replaced by difference 
operation. One can use either first order directional derivatives, like x∂∂ or y∂∂ in which 
case one would have to search for their crests and troughs at each orientation (Fig. 1b) when 
applied to a 2-D image, or one can also use second order directional derivatives, like 

22 x∂∂ or 22 y∂∂  in which case the directional intensity change would correspond to their 
zero-crossings (Fig. 1c). Using finite difference approximation, the corresponding spatial 
organizations for some these operators or “receptive fields” as they are neurophysiologically 
termed, are displayed below: 

≡∂∂ x -1 +1 ≡∂∂ 22 x -1 +2 -1 
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Fig. 1. (a)  A function showing simple one-dimensional step edge. (b) First order derivative 
of a step edge showing zero value at all points except the transition point. (c) Second order 
derivative of a step edge.  It is to be noted that the location of the zero crossing faithfully 
reproduces the location of the edge. 

These are also called masks and all the operations can be performed on a digital image by 
convolving ),( ii yxI  with such a mask. Convolution of a digital image with a finite mask is 
the process of converting the gray value of each of its pixel with weighted sum of the gray 
values of the pixels in its neighbourhood. In this way a one dimensional image 
corresponding to the step function shown in Fig. 1a has been convoluted with the two 
masks shown above and the intensity distributions of the convoluted images have been 
shown in Fig. 1b and 1c.  However, a major disadvantage of these operators is that, they are 
all directional. Thus in order to use first order derivatives, both xI ∂∂  and yI ∂∂ have to be 
computed, where I represents the intensity distribution of the image. Then the crests and 

troughs in the overall amplitude have to be found i.e. ( ) ( )[ ]2
1

22 yIxI ∂∂+∂∂ must also be 
computed. Using second order directional derivative operators will lead to similar and 
worse problems. The only way to avoid these extra computational burdens is to choose an 
isotropic differential operator and such an operator of the lowest order happens to be the 
Laplacian ( 2∇ ). It is also interesting to note at this point that a role of the same operator in 
visual perception was suggested by Ernst Mach (Mach, 1865). Mach relied upon 
psychophysical observations to arrive at this conclusion empirically. This we shall explain in 
section 4. Presently we shall discuss the role of Gaussian blurring in the edge detection 
problem.
Edge detection being a problem of numerical differentiation, is a weakly ill-posed problem 
since every realistic image is contaminated by some noise and these small variations in 

(a) (b)

(c)



The Theory of Edge Detection and Low-level Vision in Retrospect 357

input lead to large changes in output. Since a noise point has a likelihood of having an 
intensity difference with its neighbours, in edge analysis this may create spurious edge 
points. It is, therefore, desirable that before processing the image, the intensity of a noise 
point should be brought closer to the intensity of its neighbourhood. Any filter operated 
over the image to achieve such a smoothing should make the spatial variation of intensity as 
small as possible or in other words the spatial variance xΔ  of the filter should be small. On 
the other hand, the filter’s spectrum should be band-limited in the frequency domain. 
Consequently its variance ωΔ  should also be small. There is a conflict between these two 

localisations through an uncertainty principle:
4

πω ≥ΔΔx . The only function that optimises 

this relation is the Gaussian function. This is the reason why the images are generally 
smoothened by convolving with a Gaussian function prior to the differentiation operation. 
A one-dimensional Gaussian function is defined as:  
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Here σ  is the standard deviation (or scale parameter) of the Gaussian function. 
Convolution of an image with the Gaussian function effectively wipes out all structures at 
scales smaller than the space constant σ  of the Gaussian function. It may easily be verified 
that the Fourier transform of a Gaussian function is also a Gaussian. 
In 2-D, the Gaussian is defined as: 
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For an image, the Gaussian filtering has the added advantages. Since a 2-D Gaussian 
function is rotationally symmetric, it preserves the neighbourhood characteristics both in the 
spatial and frequency domain. It is also computationally handy because it can be 
decomposed into two 1-D Gaussians i.e. )()(),( yGxGyxG = . In fact Gaussian is the only 
rotationally symmetric function that is separable. The two types of filters, discussed above 
viz. the derivative operator and the smoothing operator, are both used extensively in digital 
image processing. In effect, initially the unwanted noises are to be removed (smoothened) 
from the image by convoluting it with a Gaussian function. Then a derivative filter is 
operated to detect the edge points. From the discussion presented above, it is becoming 
increasingly clear why in their classical theory of edge detection (Marr & Hildreth, 1980), the 
authors argued in favour of the Laplacian of Gaussian ( G2∇ ) based structure of receptive 
field. But before we deal with this operator in more detail, it is first important to look into 
the mechanism of image processing in mammalian eye and what the receptive field is. 

3. A Brief Overview of Mammalian Retina 

It is known from neurophysiological experiments on cat and monkey that a good deal of 
processing of images falling on the eye occurs in the retina and primary visual cortex itself.  
This is known as primary or low-level visual processing. We shall now give a brief overview 
of the physiology related to primary visual processing and its role in edge detection.  
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Fig. 2   A schematic drawing showing the retinal network. Rods and cones, known as 
photoreceptors, receive the light, get excited, send information to the bipolar cells, either 
directly or through the network of horizontal cells. The bipolar cells, in their turn, send 
information to ganglion cells, again either directly or through the network of amacrine cells.  
From ganglion cells the information travels to the primary visual cortex through optic 
nerves. 

In the mammalian retina, the primary photoreceptors are the rods and cones (Fig. 2), which 
are spread over a surface. For simplicity if we neglect the aspect of colour, the retinal images 
can be approximated by ),( ii yxI as argued in the previous section. Classical investigations 
by neurophysiologists have shown that information about the input image is extracted in 
the successive layers of the retina (Fig. 3a). For example, a bipolar cell receives information 
from a large number of photoreceptors distributed over a circular zone, mainly through a 
network of horizontal cells and the ganglion cell receives information from the bipolar cells 
through another network of amacrine cells. It is easy to understand that any particular 
bipolar or ganglion cell cannot receive information from all the photoreceptors (rods and 
cones) of the entire retina. Only a small area of the retina would be responsible for eliciting 
response in that cell. That area (assumed to be circular or elliptical in shape) is called the 
receptive field of that bipolar or ganglion cell. A schematic diagram is shown in Fig. 3b. 
Physiologists further observed that while the receptors in the central region of this zone 
send information to a bipolar cell in a positive fashion, the information from the peripheral 
cells arrives with a reversal of signature (Fig. 4). As a result a central bright spot with dark 
background is the best stimulus for exciting the bipolar cell. (These bipolar cells are known 
as on-centre cells. There are also off-centre bipolar cells for which a dark spot with bright 
background is the most appropriate stimulus.) Information of such an antagonistic effect 
from a large number of bipolar cells is collected and transmitted by the ganglion cells.  
For simplicity in understanding the organization of a receptive field structure, let us 
consider a one-dimensional retina in which the photoreceptors are spread over a line. 
Strength of the output from a photoreceptor to the ganglion cell should be maximum when 
the two cells are in closest proximity. It is also natural to assume that the contributions  
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Fig. 3 (a) Information processing occurs in the retina through successive layers. (b) Receptive 
field of a bipolar or ganglion cell is a circular or elliptical area on the photoreceptor layer 
that elicit response in that cell  

Fig. 4 The classical excitatory-inhibitory centre-surround receptive field structure of retinal 
bipolar and ganglion cells. 
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Fig. 5. The centre and surround responses of a ganglion cell has been fitted with two 
Gaussian curves in opposite phase. The surround is represented by a broader Gaussian 
compared to the central one 

received by a ganglion cell from other receptors will smoothly fall off with the distance. 
Such a distribution can be safely assumed to be a Gaussian. This would be true for both 
positive (centre) and negative (surround) inputs (Fig. 5).  Consequently the net input to a 
ganglion cell is obtained from a difference of two Gaussian inputs, the central one (positive) 
having a smaller variance than the surround (negative). This prompted the physiologists to 
develop a model of Difference of Gaussian or DOG for the receptive field of retinal ganglion 
cells. A DOG function in one dimension, will be: 

         +ve contribution-ve -ve

Distance

Intensity of 
signal

     -2       -1           0          1          2 

     +ve contribution-ve -ve
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This model can be easily extended for two-dimensional images by using 2-D Gaussians. The 
DOG model is very effective in explaining a large number of experimental findings in 
retinal responses as we shall see in sections 4 and 5.3. Essentially DOG is the classical model 
for the centre-surround antagonistic effects observed at the retinal ganglion cell.  

4. The Classical Receptive Field and Theory of Edge Detection 

As discussed previously, from the computational point of view the most natural filter for 
edge detection should have a combination of derivative and smoothening filter. As 
established before, a Laplacian of Gaussian (LOG) filter is the best alternative for combining 
the smoothening and derivative operation for the image.  Laplacian operated on a 2-D 
Gaussian will give: 
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Marr and Hildreth (Marr & Hildreth, 1980) further argued that for a certain ratio of the scale 
parameters in DOG (i.e. for a certain value of 21 :σσ ), LOG can be considered to be a good 
approximation to DOG. We have already said that even without any knowledge of the DOG 
based classical receptive field structure from physiologists, since those experiments were 
actually performed almost a century after he carried out his psychophysical experiments, 
Ernst Mach, could still visualize empirically the centre-surround structure in retina and 
predict the Laplacian operation in early vision as well. This is what Mach said (Mach, 1865):  
“The illumination of a retinal point will, in proportion to the difference between this 
illumination and the average of the illumination on neighboring points, appear brighter or 
darker, respectively depending on whether the illumination of it is above or below the 
average. The weight of the retinal points in this average is to be thought of as rapidly 
decreasing with distance from the particular point considered.” 
Furthermore, he went on to state:  
“Let us call the intensity of illumination ),( yxfu = . The brightness sensation v of the 
corresponding retinal point is given by 

)( 2222 dyuddxudmuv +−=   (5)  

where m is a constant. If the expression in parentheses is positive, then the sensation of 
brightness is reduced; in the opposite case, it is increased. Thus, v  is not only influenced 
by u , but also its second differential coefficients.” 
Let us now see, what led Mach to arrive at such revolutionary conclusions on visual 
perception. Mach was experimenting with rotating white discs with black sectors of varying 
size, when he came across the phenomenon that is now commonly referred to as Mach band 
illusion. The most commonly used image for understanding the Mach band illusion is 
shown in Fig. 6a.  By scanning this image in a direction in which the luminance increases or 
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decreases our visual system perceives an actually non-existent darker bar at the location 
where the figure just starts getting lighter. Similarly, a brighter bar is perceived at the point 
where brightness just stops increasing. However, a horizontal line scan of this image (Fig. 
6b) clearly establishes that what we see is a mere illusion and the image represents a simple 
staircase function only devoid of any special border effect. It was the observation of this 
illusory phenomenon that prompted Mach to arrive at his inferences quoted above. In order  

Fig. 6 (a) The Mach band illusion of dark and bright borders around bright and dark regions 
respectively (b) A horizontal profile of this image is obviously a simple staircase function 
that bears no signature of the illusory perception. 

to conceive Mach’s arguments let us resort to the receptive field mode of spatial 
organizations of the Laplacian operator as has been initiated for derivative operators in 
section 2. We have stated there that a finite difference approximation of the horizontal 
directional second order partial derivative, 22 x∂∂  may be written as: 

Consequently, the vertical directional operator 22 y∂∂ may be represented by the transpose 
of the above vector. When these two are combined together, we obtain the kernel for the 
isotropic 2∇  (i.e. 2222 yx ∂∂+∂∂ ) operator: 

           

Using the property of isotropicity of the Laplacian opeartor, the diagonal directions are now 
incorporated by taking the co-ordinates along these directions applying a 045  rotation so 
that we arrive at a new kernel: 

≡∂∂ 22 x -1 +2 -1 
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-1 4 -1 

0 -1 0 
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By combining the above two kernels, we get the omnidirectional operator corresponding 
to 2222 yx ∂∂+∂∂ :

Convoluting any intensity array u  with this operator and combining the result linearly 
with u  as has been proposed by Mach in Equation (5), is the same as convolving u with the 
filter mask given below:  

    

Let us now convolve the Mach band image shown in Fig. 6 with this final mask. We find 
that the edges at each transition have become enhanced by a mechanism where new bands 
have been formed clearly separating each gray level from the other (Fig. 7a). To demonstrate 
that this again is not mere illusion, we draw a horizontal line profile through this convolved 
image to find undershoots and overshoots at each step transition that bears resemblance to 
our illusive perception of the original image whose line scan is in contrast simply a staircase 
function (Fig. 6b).  So we understand what prompted Mach to propose the Laplacian 
operation as a model for spatial filtering in the retina and as is apparent from this mask, it is 
essentially excitatory-inhibitory in character, which also Mach claimed. Since we have 
already defined image edges as sharp changes in gray levels, therefore we may conclude 
from these observations that any image convoluted with the omnidirectional Laplacian 
mask will show pronounced Mach band effect at each edge of the filtered image. In other 
words, the edges will all be enhanced due to the effect of such a kernel being operated on 
any image, since new Mach bands will be created that would serve to clearly distinguish 

-1 0 -1 
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one gray level from another.  Edge enhancement by such a mechanism has been shown in 
Fig. 8. The resultant images clearly show an increase in the level of sharpness compared to 
the original images. The reason behind such sharpening is that the bright Mach bands 
around dark regions and the dark ones around lighter regions, apart from being illusions, 
also play a crucial role in image processing. They actually represent a mechanism of lateral 
inhibition or the contrast-sensitivity in the eye that enables one to clearly isolate an object 

Fig. 7 (a) The effect of convoluting the Mach band image in Fig. 6a with the omnidirectional 
Laplacian mask clearly shows that new bands have actually been formed clearly separating 
each gray level from the other (b) This becomes obvious if we draw a horizontal line profile 
through the convoluted image, that shows the new bands as undershoots and overshoots at 
each step of the staircase shown in Fig. 6b. In other words a mimetic of the illusory 
perception of Fig. 6a, has thus been reproduced.   

(a)

 (b)
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Fig. 8 Result of convoluting two bench-mark images in (a) and (c) with the omnidirectional 
discrete Laplacian mask has been shown in (b) and (d).  

from its background, thus helping in image sharpening. As already mentioned, the 
polarities in the discrete mask resemble the antagonistic centre-surround receptive field 
structure shown in Fig. 4. Also, being an orientation independent operator, this mask 
naturally forms the Mach bands in all directions in an image, thus enhancing the images 
from objects of any arbitrary shape.  What effectively gets sharpened in the process, are the 
edges in the images. This phenomenon, in fact, mystified Mach’s viewpoint about illusion 
and reality, which finally led him to construct the unscientific philosophy of empirio-
criticism. 

5. The Non-classical Receptive Field and Low-level Vision in Retrospect 

When Marr and Hildreth (Marr & Hildreth, 1980) claimed the equivalence of LoG and DoG 
for a particular scale ratio between the two Gaussians, they could not provide any strong 
theoretical basis for the equivalence. That basis was provided much later in a paper by Ma 
and Li (Ma & Li, 1998), wherein they proved from very general consideration that any 
derivative filter of a smooth function could be expressed as a linear combination of the 
smooth function at different scale parameters. Ma and Li have shown that any kth2 order

(a) (b)

(c) (d)
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derivative filter can be designed as the weighted sum of any )1( +k  even functions, every 
function having the same kernel, but different scales. Also thk )12( +  order derivative filter 
can be designed as the weighted sum of )1( +k odd functions of different scales. In the 
present chapter our discussion, with respect to non-classical receptive field will be confined 
only within even order derivative filters because we have chosen to construct filters at 
different scales by using two-dimensional Gaussian function, which happens to be an even 
function.
But first, it would be appropriate to introduce the concept of non-classical receptive field of 
retinal ganglion cells. The concept of a centre-surround antagonistic receptive field of retinal 
ganglion cell, as we have already discussed, evolved on one hand, from Mach’s earlier 
studies in psychophysics and on the other from the later experiments dealing with the 
neurophysiology of retina. The DOG or LOG models merely follow this studies. Some 
experimental observations, however are strongly indicative of some necessary modification 
to this concept of “classical receptive field”. From such experiments from seventies onwards 
of the last century, it was observed that there are many photoreceptor cells outside the 
classical receptive field, that are capable of modulating the behaviour of the ganglion cells. 
Presently, there is practically no doubt that the actual receptive field of a ganglion cell is 
much widely spread than that depicted by the classical picture and that such an extended 
surround actually disinhibits the response of the classical receptive field. Such a non-
classical receptive field containing non-linear sub-units is shown in Fig. 9, following a recent 
work (Passaglia et al., 2001), where it is conjectured that the mean increasing and mean 
decreasing units would remain either active or inactive depending on the desired task of the 
retina.
Although the modulation of the ganglion cells by the non-classical receptive field is 
probably nonlinear in nature, yet some of the effects of the non-classical receptive field may 
be emulated by modeling the corresponding response bahaviour simply as a linear 
combination of three or more zero-mean Gaussians at different scales. The narrower two of 

Fig. 9 The non-classical receptive field of retinal ganglion cells is characterised by an 
extended disinhibitory surround beyond the classical receptive field 
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these Gaussians may represent the classical center and the classical antagonistic surround 
while the non-classical extended disinhibitory surround mostly contributed by the amacrine 
cells in the inner plexiform layer of the retina may be represented by the wider Gaussians. 
Since, according to Ma and Li (Ma & Li, 1998), such a linear combination of Gaussians could 
be expressed as equivalent to higher order derivatives, therefore from such an argument it 
can been shown, that the non-classical receptive field of retinal ganglion cells can be 
modeled by a fourth or sixth order rotationally symmetric derivative of Gaussian, that is by 

G4∇ (the Bi-Laplacian or Bi-harmonic of Gaussian) or G6∇ (the tri-Laplacian of Gaussian). 
The detailed expressions are given in the sub-section 5.1 for the one-dimensional case, 
where it has also been shown that one could express G4∇  as 1GDoG + where 1G  is the 
widest Gaussian representing a disinhibitory surround beyond the classical receptive field 
or in other words the mean-increasing sub-units in Fig. 9. Similarly, G6∇  can be expressed 
as 21 GGDoG −+ , where 2G  is another wide Gaussian representing the mean-decreasing 
sub-units in the same figure.   

5.1 A Simple Model for the Non-classical Receptive Field Structure 

If the positive sub-units of the non-classical receptive field are primarily considered, then in 
one dimension, following Ma and Li, one can construct a fourth order derivative filter as a 
linear combination of three Gaussians. For this, let us define a function kh2 using the 
primitive Gaussian filter ),( σxg as:
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Here jα ’s are the weight functions. Ma & Li  showed that kh2 is a ( )k2 -th order derivative 
filter if  the jα ’s satisfy the following equations : 
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is not singular. Here kgm 2,  is the thk)2( order moment of the function ( )xg .
Thus, for second order derivative, taking 1=k , one gets 
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Here 0α  is a ratio of scale parameters. For a scale ratio t , i.e. if σσ =1  and σσ t=0
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Similarly, for fourth order derivative filter, let us define a function  
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where 10 ,αα  and 2α  satisfy the following equations 
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Solving these equations, we get: 
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In this case, for the two scale ratios t  and p , i.e. if σσ =2 , σσ t=1 and σσ p=0 , then: 
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If we take a look at the final values of the three coefficients, 10 ,αα  and 2α as given by 
Equation (13), we find that a fourth order derivative filter as given in Equation (10) is 
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essentially a non-classical 1GDoG +  model as mentioned in the previous section. Moreover, 
experimental observations on non-classical receptive fields (Passaglia et al., 2001), indicate 
that the central region is much smaller than the extended surround, or in other words 0σ  is 
negligible in comparison to 2σ . Based on these, we can consider the ratio 20 :σσ to be very 
small and hence apply a condition 0→p  in Equation (13). Then using Equation (10), we 
arrive at: 

            ( )→σ,4 xh ( )/
2 ,σxmh ( )//

2 ,σxh+   (14) 

where, /σ  and //σ  are two arbitrary scales and m  is an amplitude scale factor and ( )xh2  is 
given by Equation (9). 
In the same way if we incorporate the negative sub-units of non-classical receptive field, 
then following the same procedure: 
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If we again take a look at the final values of the four coefficients, 10 ,αα , 2α and 3α , we find 
that the corresponding expression matches the 21 GGDoG −+  model described in the 
previous section. Then once again following the same procedure described above we 
assume 30 :σσ  to be very small and apply a condition 0→r in Equation (16). Putting these 
values in Equation (15), after some algebraic manipulation, we finally arrive at: 
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Then applying Equation (14) in Equation (17), we get: 
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Here ////// ,, σσσ are all arbitrary and hence do not represent any particular scale at any 
stage of the derivation. So in two dimensions:  
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Any of these equations viz. Equation (10), (14), (15) or (19) may be considered to be our 
proposed model for non-classical receptive field, which means the receptive field will not be 
represented by LOG only whose equivalent physiological model is given by Equation (8), 
but rather by a linear combination of even order isotropic Gaussian derivatives. So the 
advantage of economy of computation that was applicable for LOG remains valid, while at 
the same time apart from the scale of the Gaussians, the factor m can also play a role in 
visual information processing at low level. To understand this more clearly we have to again 
resort to a corresponding receptive field like spatial organization as before for such a 
mathematical function and see whether it also reflects the disinhibitory extended surround 
in such a form of representation.   

5.2 Derivation of a Kernel for the Non-classical Receptive Field 

First of all we discuss on the construction of a computationally handy kernel for the 4∇

operator following the methodology of construction of the convolution matrix for the 2∇
operator, using finite difference approximation as discussed in section 4. Clearly,  
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Utilising the finite difference approximation of the fourth order partial derivative, the kernel 
for 44 x∂∂ in discrete domain can be represented by the kernel: 

By transposing this kernel we may construct the corresponding vector for 44 y∂∂ , add 
these, so that we get the corresponding matrix for a linear combination of these two terms, 

i.e. for   
4

4

4

4

yx ∂
∂+

∂
∂ :

0 0 1 0 0 
0 0 -4 0 0 
1 -4 12 -4 1 
0 0 -4 0 0 
0 0 1 0 0 

Using the expressions for 22 x∂∂  and 22 y∂∂ in section 4 we may arrive at a 55×  matrix 

for
2

2

2

2

yx ∂
∂

∂
∂ :

≡∂∂ 44 x 1 -4 6 -4 1 
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Then from equation (20), we arrive at the following kernel for the Bi-Laplacian operator: 

                                  

As in the case of deriving the Laplacian kernel the diagonal directions are now incorporated 
by taking the co-ordinates along the diagonals through a 4π  radian rotation. The new 
kernel thus obtained is then added as before, to the above kernel so that we arrive at the 
mask: 

But, unlike the Laplacian, this being a 55× mask, the asymmetry still remains and in order 
to arrive at an omnidirectional mask for the isotropic 4∇  operator, we apply another 8π
radian rotation so that we may also incorporate the off-diagonal elements. Then once again 
adding the new kernel thus obtained to the above mask, the final form that the Bi-Laplacian 
mask assumes is:                            

0 0 0 0 0 
0 1 -2 1 0 
0 -2 4 -2 0 
0 1 -2 1 0 
0 0 0 0 0 

0 0 1 0 0 
0 2 -8 2 0 
1 -8 20 -8 1 
0 2 -8 2 0 
0 0 1 0 0 

1 0 1 0 1 

0 -6 -6 -6 0 

1 -6 40 -6 1 

0 -6 -6 -6 0 

1 0 1 0 1 

1 1 1 1 1 

1 -12 -12 -12 1 

1 -12 80 -12 1 

1 -12 -12 -12 1 

1 1 1 1 1 
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Fig. 10  The two benchmark images (a) and (d) used in section 4, have been enhanced with 
the discrete Laplacian mask in (b) and (e) and by the derived digital mask in (c) and (f). 

Since, the non-classical receptive field has been modelled by Equation (19) in the previous 
sub-section, therefore we shall now try to arrive at a new omnidirectional mask that is 
comparable to the omnidirectional Laplacian mask and at the same time whose spatial 
organization reflects the disinhibitory extended surround as an added feature to the lateral 
inhibition evident in the spatial organization of the Laplacian mask. We show below one 
such possiblity. We choose the value of m in Equation (19), so that  if we combine the 
Laplacian and the Bi-Laplacian masks by a ratio of 1:9 , we arrive at such a new 

55× discrete filter comparable in simplicity to the 33×  Laplacian mask:  

Correspondingly, by including the original intensity distribution to such a derivative 
opeartor, as a modification to the proposal of Mach given by Equation (5), we get a new 
spatial organization for the non-classical receptive field that includes disinhibitory inputs 

-1 -1 -1 -1 -1 

-1 3 3 3 -1 

-1 3 -8 3 -1 

-1 3 3 3 -1 

-1 -1 -1 -1 -1 

(a) (b) (c)

(d) (e) (f)
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from the surround extended from the classical excitatory-inhibitory organization of 
receptive field: 

This is the new omnidirectional mask whose performance in enhancing edges, we can now 
compare with the omnidirectional Laplacian mask.  From visual inspection (Fig. 10) it is 
clear that this new discrete filter derived from a combination of Laplacian and Bi-Laplacian, 
indeed performs better compared to the discrete Laplacian mask. The Mach bands have 
been further enhanced by the new discrete filter as compared to the discrete Laplacian filter, 
which leads to better segregation of objects from background and hence better edge 
enhancement. The incorporation of disinhibition has therefore further improved edge 
enhancement. 

5.3 Explanation of Complex Brightness-contrast Illusions 

As we have already seen that the Mach band illusion can be well explained by the DOG 
model of classical receptive field. Some other brightness-contrast illusions like the 
Simultaneous brightness-contrast effect or the grating induction effect can also be explained 
by the  classical model. The Simultaneous brightness-contrast is usually described as a 
homogenous brightness change within an enclosed test patch such that a gray patch on a 
white background looks darker than an equally luminous gray patch on a black background 
(Fig. 11a). This phenomenon is also well explained by the isotropic DOG model, as shown in 
Fig. 11b, where we have drawn a horizontal profile through the two test patches in the 
image that is obtained by convoluting the original image with the DOG function given by 
Equation (8).

Fig. 11(a) The Simultaneous Brightness-contrast illusion (b) Explanation by convolution with 
DOG model along a horizontal line profile through the equiluminant test patches in the 
convolved image, showing the difference in brightness perception. 

-1 -1 -1 -1 -1 

-1 3 3 3 -1 

-1 3 -7 3 -1 

-1 3 3 3 -1 

-1 -1 -1 -1 -1 

 (a)  (b) 
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Grating Induction, on the other hand, refers to a periodic apparent contrast induced in 
uniform fields by adjacent gratings. This image displays a brightness effect that produces a 
spatial brightness variation (a grating) in an extended test patch (Fig. 12a). This effect can  

Fig. 12 (a) The Grating Induction illusion. (b) Explanation by convolving the image with 
DOG model along two horizontal line profiles, one through the constant intensity test patch 
(solid line) and one through the grating (dotted line) in the convolved image. 

Fig. 13 (a) The White effect illusion. (b) Attempted explanation with conventional isotropic 
DOG function along a horizontal line profile through the equiluminant gray segments in 
convolved image, gives results in brightness perception contrary to our visual sensation. 

also be similarly explained by the DOG model as has been shown in Fig. 12b, by drawing 
two horizontal profiles one through the test patch and the other through the grating. 
However, many other brightness-contrast illusions like the White effect and the 
checkerboard illusion cannot be explained using the classical DOG model. In the White 
effect, for example in a square grating of black and white bars, if identical gray segments are 
used to replace part of the black bars and also part of the white bars, then the former gray 
segments look brighter than the later (Fig. 13a). Conventional isotropic DOG filters, fail to 
simulate this illusion and produce results contrary to our perception (Fig. 13b). The effect is 
specifically interesting because it does not depend on the amount of dark or white border in 
the vicinity of the test patch. True, that the effect may be generated if lateral inhibition 
shows directional properties i.e. inhibition is supposed to be stronger along the bars than 

(a)  (b) 

 (a)  (b) 
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across them, but such a supposed anisotropy in lateral inhibition is not observed in White’s 
effect on checkerboard (Fig. 14a), a symmetric image that cannot be explained with the  

Fig. 14 (a) The checkerboard illusion. The horizontal line profiles through the two test 
patches of the image obtained after convolution with DOG model. From the horizontal line 
profiles it is clear that the test patch on the left in darker neighbourhood (solid line 
representation) appears brighter compared to the one on right (dotted line representation), 
which is opposite to our perceptual experience. 

   
Fig. 15 Explanation of the White effect illusion by convolving the image with the 

1GDoG + model which produces results that match our brightness perception. 

isotropic DOG model as well (Fig. 14b). Gestalt theorists believe that White effect can be 
understood only in terms of perception at a higher level and hence such illusions are often 
considered as more complex brightness-contrast phenomena that fall beyond the scope of 
low-level vision. Thus to probe whether the explanation of the White effects could have a 
basis in the retinal physiology, it would indeed be tempting to use the model of non-
classical receptive field in the simulation of the White effects (Ghosh et al., 2006). We find 
that the White effect illusions, for both the anisotropic and isotropic (checkerboard) cases, 
where the DOG model failed completely, can be faithfully explained by convoluting the 
images with the function given by Equation (10), i.e. by the non-classical 1GDoG + model. 
This has been shown in Fig. 15 and Fig. 16. 

(a) (b)

 (a)  (b) 
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Fig. 16 Explanation of the checkerboard illusion by convolving the image with the 
1GDoG + model producing results similar to our brightness perception.  

5.4 A Possible Explanation of the Filling-in Mechanism in Retinal Blind Spot 

It is well-known that human beings have a blind spot in each of their eyes. This blind spot is 
nothing but the area of the visual space that corresponds to the area on the retina, where all 
the optic nerves emanate from the retina (Fig. 17). It is called a blind spot because at this 
corresponding position, the retina is devoid of any rod or cone cell for receiving visual 
information.  The area in visual space, marking the blind spot for one eye, is covered by the 
retina of the other eye. Curiously however, even in monocular vision, no hole is perceived in 
the visual field. This phenomenon is referred to as “filling-in” of the blind spot. According 
to many vision scientists (Ramachandran, 1992), the blind spot is not ignored, but “filling-
in” is continually performed by the human visual system, constructing a representation 
based on the visual stimulation of the area surrounding the blind spot. Such an information 
processing based approach bears resemblance to David Marr’s (Marr, 1982) computational 
investigation of human representation and processing of visual signals.  Marr speculated 
that the computational theory of vision should cover three different possible phases in 
information processing: a) an early primal sketch of which “raw primal sketch” or detection 
of edges is the fundamental step, b) surface interpolation or the filling-in of colour and 
texture leading to the “two-and-half dimensional sketch” and c) object reconstruction and 
classification being the final step. So according to this theory, interpolation is an integral 
part of image retrieval in vision. In a bid to understand the process of interpolation, 
Ramachandran has performed some psychophysical experiments to come up with very 
interesting results on the “filling-in” of blind spots. He has shown that this “filling-in” 
process must occur as early as the detection of edges in the simple cells of primary visual 
cortex.  However such interpolation cannot be explained by the classical DOG function of 
low-level receptive field. For any kernel h(x) to qualify for an interpolator it must obey the 
following conditions:  
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=≡

3,2,1,0)(

0,1)(
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xxh
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Fig. 17 A rough schematic of the eye that demonstrates the existence of the blind spot in the 
retina of each of the eyes from where the optic nerves emerge out towards the brain. 

Secondly, it must also comply with the condition for dc-constancy, which implies that the 
sum of the samples of the interpolator should be unity for any displacement 10 <≤ d  i.e.: 

1)( ≡+
∞

−∞=

dch
c

                                     (22) 

Functions that do not fulfill Equations (21) and (22) are called ‘approximators’ and do not 
represent the ideal interpolators. The ideal interpolation function for convolution is the sinc 
function:

)(sin
)sin(

)( xc
x

xxh ideal ==
π

π

It has an infinite support having innumerable zero-crossings. This needs to be truncated to 
obtain a finite support interpolation kernel. From this consideration, the DOG response 
function of the classical receptive field given in Fig. 18a, should be an unlikely contender for 
performing the task of interpolation. This is because by comparing the kernel, with the 
second condition in Equation (21), we easily realize that this interpolator can have only one 
zero-crossing at 1=x , and can therefore at best mimic the highly truncated sinc interpolator 
within the interval 11 ≤≤− x . It will thus behave poorly in frequency domain and invariably 
produce erroneous results, unlike our almost perfect visual experience in the filling-in of 
blind spot. So as in the case of the complex brightness-contrast illusions, we again feel  
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Fig. 18 (a) The DOG kernel in one dimension can have only one zero-crossing at 1=x . It is 
therefore not possible to design a good interpolator with such a function. (b) The 

21 GGDoG −+ kernel is being shown here as a near ideal interpolator with 3 zero-crossings 
at 3,2,1=x and 1)( =xh at 0=x

tempted to investigate if our model of non-classical receptive field can suit the purpose of 
near ideal interpolation in low-level vision. For this we use Equation (15) as the convolution 
function for interpolation or in other words the 21 GGDoG −+ model of non-classical 
receptive field. From Fig. 18b we find that four zero-mean Gaussians representing the non-
classical receptive field, can produce 3 zero-crossings at 3,2,1=x  (Sarkar et al., 2005). 
This kernel, it is easy to verify will have excellent frequency domain as well as dc-constancy 
behaviour (Fig. 19) and is therefore a reasonably good contender for performing near ideal 
interpolation in the blind spot of the retina. Hence the proposal, put forward from the 
observations on the psychophysical experiments (Ramachandran, 1992) that information 

(a)

(b)(b)
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corresponding to the blind-spot can be interpolated out at an early stage of visual 
processing, is also vindicated, since the interpolation function used here is a low-level 
receptive field model only. 

6. Conclusion 

The theory of edge detection and the treatise on low-level vision presented in this chapter in 
the light of the non-classical receptive field of retinal ganglion cells is a straightforward 
continuation of the approach of David Marr and his group. The appeal of the present 
approach lies in its simplicity and easy implementation, although it should be kept in mind 
that no non-linear model of the extended surround has been proposed here, which could be 
an interesting direction of future work. Potential applications of the algorithm will include 
apart from areas of general edge enhancement, designing new robust visual capturing or  

Fig. 19 Representative curves for the interpolation kernel constructed using 
the 21 GGDoG −+ function (a) Fourier spectrum of the kernel and (b) dc constancy bahaviour 
of the kernel 

(b)

(a)
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or display systems and automatic detection and correction of perceived incoherence of 
luminance in video display panels, where accurate perception of intensity level is critical. 
Such applications will be important particularly in mission-critical domains such as aircraft 
display panel design.  Also, the concept of disinhibition introduced into the low-level 
receptive field structure, can be extended in future to higher brain functions such as 
categorization and memory. It is possible that a close analysis of cortical horizontal 
connections and their physiology under the disinhibition framework can provide us with 
new insights on their functions. This in turn will allow us to apply the general concept of 
disinhibition in advanced intelligent systems, firmly based on biological observations. 
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1. Introduction     

Green's functions are a traditional technique for solving inhomogeneous differential 
equations which has found several applications in pure and applied science, as, for instance, 
in Electrodynamics or Quantum Mechanics (Hassani, 2002). Given a one-dimensional linear 
differential operator, x , and a set of boundary conditions, the solution to the 
inhomogeneous differential equation  )x(g)x(fx = can be expressed as  

00D 0 dx)x(g)x,x(G)x(f =  (1) 

where D is the domain of interest, and where the operator )x,x(G 0 , called the Green's 
function, is the solution to the equation  

)x-x()x,x(G 00x =  (2) 

under the same boundary conditions, with )x-x( 0 denoting Dirac's delta function. 
Operating on both sides of  (1) with x , and making use of equation (2), we obtain 

)x(gdx)x(g)x-x(dx)x(g)]x,x(G[)x(f 0D 000D 00xx ===  (3) 

where the sieving property of the delta function has been used, what proves that the 
function f(x), given by (1), is indeed the solution sought. 
It should also be noted that, if )x,x(H 0  is another integral operator, satisfying 

0)x,x(H 0x =  (4) 

the complex kernel )x,x()iH+G(=)x,x(K 00  can be formed, such that 

=
D 000 dx)x(g)x,x(K)x(f  (5) 

is also a solution to the original differential equation, i.e., it satisfies )x(g)x(fx = .
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Recently, the use of Green's functions of image matching equations has been proposed as a 
suitable means for approaching several visual computing problems, including shape from 
shading (Torreão, 2001; Torreão, 2003; Torreão & Fernandes, 2004), edge detection (Torreão 
& Amaral, 2002 and 2006), motion simulation (Ferreira Jr. et al., 2004), and video 
interpolation (Ferreira Jr. et al., 2005). 

Image matching equations have been used in computer vision and image processing for 
modeling such processes as stereoscopy (Barnard, 1986) and optical flow (Horn & Schunck, 
1981). For instance, if 1I and 2I are two images of  a dynamic scene, captured at consecutive 
times by a static camera, the optical flow constraint can be expressed as the intensity 
conservation condition  

)y,x(I=)V+y,U+x(I 12  (6) 

where U(x,y) and V(x,y) are the optical flow components along directions x and y, 
respectively. The goal is then to use such image matching condition for estimating U and V, 
what is generally done by first expanding equation (6) in a Taylor-series up to first order in 
the flow, and using it along with other constraints (that would express, for instance, the 
smoothness of the flow components), in order to allow the solution of such ill-posed 
problem.
In the Green's function approach, on the other hand, a different use is made of the matching 
equation: assuming that the flow field is known (e.g., a uniform or an affine flow), equation 
(6) is solved for the matching image 2I , given 1I . For instance, assuming uniform flow 
along the direction arctan= (i.e., U(x,y) = u and V(x,y) = v, for both u and v constants, 
with u/v= ), and taking a second-order Taylor-series expansion, the matching equation 
becomes  
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2
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Iu
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I
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u =+

∂
∂+

∂
∂2

 (7) 

with )x+y,x(I=I ii . The solution to the above can be expressed as 

00010D u2 dx)xy,x(I)x-x(G)xy,x(I +=+  (8) 

where )x-x(G 0u  is the Green's function to equation (7),  i.e., it is the solution to that 
equation when a delta function is substituted for 1I on its right-hand side. If we want 
bounded solutions over an infinite domain ),(D ∞−∞= , uG will take the form (Torreão, 
2001)

=
u
x-x-exp

u
x-xsin

u
2)x-x(G 00

0u  (9) 

for 0x>x , with 0=Gu , otherwise. It will thus be a causal, shift-invariant operator. 
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Different kinds of Green's functions will result from different flow assumptions. If, instead 
of the uniform flow, we considered a one-dimensional affine model, with xu+u=)x(U 10 ,
for constant 0u and 1u and with )x(U=)x(V , the matching equation would become  

12
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10 II
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I)xuu(
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)xuu( =+

∂
∂++

∂
∂+  (10) 

whose Green's function, again if we require bounded solutions over an unbounded domain, 
will be (Ferreira Jr. et al., 2004) 

=
U0

U

U0

U

U0
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0
)1(

U x-x
x-xlogsin

x-x
x-x

)x-x(u
2)x,x(G  (11) 

for 0x>x , with 0=)x,x(G 0
)1(

U , otherwise. In equation (11), the parameter Ux is defined as 

10U u/u-x = , and corresponds to the fixed point of the affine transformation, since we have 
0=)x(U U . The parameters α and β are given as 
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The Green's function, in this case, is a shift-variant operator which remains bounded over a 
domain ),x(D U ∞⊂ , so long as we take 2<u<0 1 . Over finite domains, this solution is 

valid for 222u22-2 1 +<< .
Still another form of Green's function results from considering the matching equation under 
the guise
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which is a variant of the affine matching condition, identical to equation (10) up to first 
order in 0u . The bounded Green's function for the above, over a domain ),x(D U ∞⊂ , can 
be approximated, when 0U x,x|x| >> , as (Torreão & Fernandes, 2004)  

−= 2
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)2(

U 2
)x-(x-)x-(x-exp)xx(|x|sin|x|2)x,x(G  (14) 

for 0x>x , with 0=)x,x(G 0
)2(

U , otherwise.  It can be easily verified that, similarly to our first 

affine form, )1(
UG , the filter )2(

UG reduces to the uniform Green's function, 0uG , in the limit of 

0u1 → , as should be expected, where .|x|/u U
2

0 =
All the Green's functions considered can be interpreted as point spread functions which 
generate motion through a linear model: when filtering an input image, they induce a 
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displacement of the image features, accompanied by a loss of high frequencies which can be 
interpreted as motion blur. The potential of this for motion synthesis in computer graphics 
is evident, and has been extensively explored, based on the filter )1(

UG (Ferreira  Jr.  et al., 
2004 and 2005).  
Here, we will be mainly concerned with the computer vision applications of the approach, 
which have been based on the forms uG and )2(

UG . Such applications also stem from the 
motion induction capabilities of these Green's functions. For instance, given a single input 
image, a second image can be generated which simulates the photometric stereo pair to the 
input, representing the same scene under displaced illumination. This has been used as the 
basis to the Green's function shape from shading (Torreão, 2001), which extends, to single-
image reconstruction, a two-image photometric-stereo approach (Torreão & Fernandes, 
1998). Similarly, a depiction of the scene under a displaced point of view can also be 
simulated from a given image, what has led to the Green's function photometric motion 
(Torreão & Fernandes, 2004), also extending, to the single-input case, a multi-image process 
(Torreão  et al., 2007).  
Signal differentiation is another computer-vision/image-process application where the 
Green's functions of matching equations have found use (Torreão & Amaral, 2002 and 2006). 
This comes along naturally, when we remember that the first-order derivative of a signal 
can be approximated through the difference of displaced versions of it. Finally, we will here 
introduce a new application area for our Green's functions, by showing that, through their 
means, displaced versions of binocular image pairs can be generated whose local degree of 
matching yields a reliable measure of stereoscopic disparity. 
The remainder of this chapter is organized as follows: in Section 2 and Section 3, we review 
the Green's function approaches to signal differentiation and to shape from shading, both 
based on the uniform-matching Green's function, uG ; in Section 4, we review the Green's 

function photometric-motion process, based on the affine Green's filter, )2(
UG (which, for 

simplicity, will henceforth be referred simply as UG ), and, in Section 5, we introduce the 
use of the same filter for stereoscopic disparity estimation. Our final remarks close the 
chapter in Section 6.  

2. Signal Differentiation through Green's Functions 

The Green's function approach to signal differentiation is based on the following rationale: If 
)x(I′ is the derivative of a signal )x(I , it can be expressed as  

u2
)u-x(I-)ux(Ilim)x(I

0u

+=′
→

 (15) 

According to the Green's function approach summarized above, an estimate of the signal 
)u-x(I , let us call it )x(I- , can be obtained as (see equation (8)) 

∞

∞
=≡

- 000u- dx)x(I)x-x(G)u-x(I)x(I  (16) 
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where uG (see Fig. 1) is the uniform-matching Green's function, as presented in (9). The 
identity in equation (16), valid up to second order in u, results from inverting the matching 
relation )x(I=)u+x(I- , which is a special case of equation (6).  
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Fig. 1. Green’s function )x(Gu , as a function of x/u. 

Similarly, a signal )x(I+ , which is an estimate of I(x + u), can be obtained as 

∞

∞+ =+≡
- 000u dx)x)I(x-x(G)ux(I)x(I  (17) 

where it can be easily verified that the filter )x-x(G 0u  will be the Green's function of a 
matching equation of the form )x(I=)u-x(I+ .
Using relations (16) and (17) in equation (15), and applying the commutative property of the 
convolution, there results the derivative estimate 

[ ] 00- 0u0u0u
dx)x-x(I)x(G-)-x(G

u2
1lim)x(I ∞

∞→
=′  (18) 



Vision Systems - Segmentation and Pattern Recognition 386

and we have thus arrived at a linear operator, )]x(G-)(-x[G
u2
1

=)x(D uuu , which, in the 

limit of u → 0, becomes the impulse response of a differentiator. )x(Du  turns out to be a 
special case of Deriche's well-known edge-detector (Deriche, 1987) 

xsin|)x|-exp(-=)x(d  (19) 

for u/1== .
A more general form for our differential operator can be found if we allow for scale factors 
in the matching equations. For instance, we could consider the relations 

)x(I=)u
x

(I±  (20) 

to obtain the derivative estimate 

00- 0u0u0u
dx)x-x(I)]x(G-)-x(G[

u2
1lim)x(I ∞

∞→
=′  (21) 

thus arriving at 

)]x(G-)(-x[G
u2

1
=)x(D uuu  (22) 

as a generalized version of our differentiator. Multiscale derivative estimates can then be 
obtained through linear combinations such as 

)x(Ia)x(I nest ′=′  (23) 

where the a are real-valued constants, satisfying 1a = . For instance, we may consider 

just two terms in the above expansion, to get 

)a1(
)x(Ia)x(I

)x(I 1
est +

′+′
=′  (24) 

From equations (18) and (21), we thus see that, in such case, our derivative estimate will be 
obtained by convolving the input signal with the operator (see Fig. 2)   

F(x)]--x)(F[
u2
1

=)x(D
 (25) 

where F(x), for x > 0, is given by 
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u
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with 2)u)(a+1(
a

=A  and a/=K 2 .
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Fig. 2.  Filter D(x), as a function of x/u. 

In (Torreão & Amaral, 2006), a study was carried out which determined the values for a and 
η leading to maximum overall performance by the filter D(x), as measured through the (ΣΛ)
SRC index introduced by Canny, where Σ, Λ and SRC denote, respectively, the detection, 
localization, and single-response measures (Canny, 1986). With a=1.1 and η=3.5, a (ΣΛ) SRC 
of 3.547 was achieved, beating the performance of alternative approaches, such as Sarkar 
and Boyer's filter, whose best mark is 3.388 (Sarkar & Boyer, 1991). Another advantage of the 
operator D(x), as also proven in (Torreão & Amaral, 2006), is that it allows simple recursive 
implementations, being realized as an infinite impulse response filter with only two poles 
and a single zero. 
Fig. 3 shows examples of the use of operator D(x) for edge detection. In such 2D 
applications, D(x) was employed in the direction perpendicular to the edges sought, while a 
projection function - chosen here as the integral of D(x) - was used in the direction parallel to 
the edges. Non-maxima supression and hysteresis thresholding have also been employed, in 
the usual fashion (Canny, 1986). 
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(a)

(b) (c)
Fig. 3.  Example of the use of operator D(x) for  edge detection. (a) : input image. (b) and (c) : 
edges obtained for u = 0.05 and u = 1.0. 

3. Green's Function Shape from Shading 

Shape from shading (SFS) and photometric stereo (PS) are 3D shape estimation processes 
that take shading images as inputs - that is to say, they work with textureless images where 
a smooth gradient of intensities is observed, resulting solely from the orientation of the 
observed surfaces. SFS estimates surface orientation from a single shading image, while PS 
works with two or more monocular shading inputs, acquired under different illuminations. 
Both processes have been traditionally based on the so-called image irradiance equation, 
which relates the intensity at each image point to the surface gradient at the corresponding 
location in the scene, via the reflectance map function (Zhang et al., 1999), as 

)q,p(R=)y,x(I  (27) 

where

y
Zqand,

x
Zp

∂
∂=

∂
∂=  (28) 

are the gradient components of the observed surface, Z(x,y), and where R is the reflectance 
map. 
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In (Torreão & Fernandes, 1998), an approach to photometric stereo was introduced, called 
the disparity-based photometric stereo (DBPS), whereby a pair of PS images are matched, 
similarly as a stereoscopic pair (Barnard, 1986), to yield a disparity map from which the 
shape of the observed surfaces can be recovered. Such disparity map results from the 
displacement of the irradiance pattern over the imaged surface, due to the change in 
illumination direction, a displacement that can be generally modeled as a non-uniform 
rotation, as proven in (Torreão, 2003). 
DBPS is based on a pair of equations: a linear image irradiance equation, and a matching 
(optical flow) equation, that take the form  

∂
∂+

∂
∂=

++=

y
Iv

x
IuI

qkpkkI
22

210
 (29) 

where 21 I-II ≡ is the difference of the input images, and where (u,v) denotes the optical 
flow, or disparity field. 
Equating the two expressions for ΔI above, there results a differential equation on Z, whose 
approximate solution can be found as  

)1(k
)yx(k-

k
uIZ 2

1

0

1

2

+
+

=  (30) 

so long as the disparity component u is found by matching the input images along a 
direction such that k/ku/v 12 == , a constant. 
As proven in (Torreão, 2001), the DBPS approach can be extended to the single-input case, 
with the so-called Green's function shape from shading (GSFS). Here, the idea is to assume 
that the disparity field is uniform, and to solve the matching equation - considered up to 
second order in u, such as in (7) - for the matching image, 2I , via Green's function. It has 
been shown that, in such case, the estimated depth map takes the form 

1

2

k
IuZ =  (31) 

with

2uuuu22 I)cHHbGaG(II ∗+∗++=  (32) 

where a, b and c here are constants, the operation ∗ denotes a convolution, 1u2 IGI ∗=  is 
the matching pair to the input image 1I , and uH is the homogeneous integral operator  

−=
u
x-xexp

u
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u
2)x-x(H 00

0u  (33) 

for 0xx >  , with 0Hu = , otherwise (see Fig. 4).  
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Fig. 4. Filter )x(Hu , as a function of x/u. 

As can be easily verified, uH satisfies the homogeneous form of equation (7), i.e.,

0HHuH
2

u
uuu

2
=+′+′′  (34) 

Besides the matching constant u, which must be chosen a priori, the single free parameter in 
equation (31) is 1k , and this can be estimated from the input data, as described in (Torreão, 
1999). For this purpose, we take into consideration the fact that the displacement of the 
irradiance pattern over the scene, due to the change in illumination (it should be kept in 
mind that we are simulating a photometric stereo situation, via the Green's function) can be 
modeled as a non-uniform rotation. This allows the introduction of a least-squares structure-
from-motion formulation that yields .k1 Fig. 5 shows examples of shape estimation via 
GSFS. 
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(a) (b)

(c)                                                                  (d) 
Fig. 5.  Examples of shape estimation via GSFS. (a) and (b) : input images. (c) and (d) : 
estimated depth maps. 

4. Green's Function Photometric Motion 

Photometric motion is a shape estimation process introduced by Pentland, based on his 
observation that, for surfaces in rotation relative to the camera, the photometric effects of the 
motion (i.e., the intensity change of a moving point) can prove more relevant than the 
geometric effects, due to projective distortion (Pentland, 1991). In his formulation, Pentland 
considered a quadratic expansion of the reflectance map, supposed symmetric and 
separable, and he also assumed that regions of approximately linear motion could be 
identified, allowing the registration of corresponding points in successive frames. Under 
such conditions, Pentland found that the intensity difference of registered points could be 
described by a linear reflectance map, and he thus used his linear shape from shading 
algorithm (Pentland, 1990) to obtain shape estimates of the imaged scene.  

An alternative formulation of photometric motion has been recently introduced in (Torreão 
et al., 2007), along similar lines as followed for the disparity-based photometric stereo. A 
distinctive feature of this formulation is that of being based on the intensity change, due to 
the motion, at a fixed location in the image plane, and not, as in Pentland's approach, at a 
given point on the moving surface. This has the advantage of not requiring warping for the 
registration of corresponding points in the image sequence. 
Similarly as DBPS, our novel approach to photometric motion relies on two expressions for 
the intensity change, due to the motion, at a given point in the image plane, one of them a 
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matching (optical flow) equation, and the other involving photometric (reflectance map) 
considerations.  
Assuming a uniformly rotating surface, with angular velocity components A and B, along 
the x and y directions, such that  

AZ-
dt
dy

vand,BZ
dt
dxu ====  (35) 

are the optical flow components, and also considering a linear image irradiance equation of 
the form qkpkkI 210 ++= , with u/vB/Ak/k 12 =−= , similarly as in DBPS, we arrive at 
the expression 

++∂= )yx(
Z

uk)k-I(uI 1
0  (36) 

for the intensity difference, 21 I-II =  , of successive frames in the image sequence.  In the 
above equation, we have used 

yx ∂
∂+

∂
∂≡∂  (37) 

where stands for the ratio v/u.  
Now, again as in DBPS, we must couple equation (36) with an image matching equation, in 
order to find a closed-form expression for the depth map Z(x,y). The appropriate matching 
equation is here found to describe an affine optical flow field, taking the form 
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+
+
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Equating (36) and (38), we find a diferential equation on Z, whose solution is given by 
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where is an arbitrary constant, provided that the term in u2∂  is neglected. 
Through the Green's function approach, the above-described photometric motion 
formulation (whose results can be appreciated in (Torreão et al., 2007)) can be extended to 
the single-input case. In order to do this, we require a Green's function that will relate the 
matching image to the input image according to equation (38). Since that is a 1D expression, 
we may, without loss of generality, take the matching direction as x, to obtain 

x
I)xuu(III 2

1021 ∂
∂−=−≡  (40) 

where 1I is the input image, 2I is the image derived from it through the Green's function, 
and 0u and 1u are two constants representing, respectively, the disparity map and its 
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derivative at x = 0 (in the general case, these will mean uu0 = and uu1 ∂= ). By comparing 

equation (40) to equation (13), we find that, up to first order in 0u , our photometric-motion 
Green's function will take the form of UG in equation (14) (see Fig. 6).  
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Fig. 6. Green’s function )x,x(G 0U , for 0x0 = , 1xU = and .1u0 =
Using this to filter the input image, we obtain its matching pair 2I , which, substituted for I 
in equation (39), yields the shape estimate Z(x,y). Figure 7 illustrates results of this 
approach.
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(b)

                                                (c)                                                            (d) 
Fig. 7.  Examples of shape estimation via Green's Function Photometric Motion. (a) and (b) : 
input images. (c) and (d) : estimated depth maps. 

5. Green's Function Stereoscopy 

In a binocular vision system, scene features project at different positions in the two cameras, 
giving rise to the so-called binocular disparities, which constitute the primary cue for stereo 
vision (Barnard, 1986). Assuming a horizontal imaging configuration, a pair of left and right 
images which are projections of the same 3D scene should be related as 

)y,x(I)y,dx(I rl =+  (41) 

where d ≡ d(x,y) here denotes the disparity map. The above is simply a special case of the 
matching equation (6), and, based on this, we can propose a Green's function approach to 
stereoscopic disparity estimation: Given the pair of binocular images, we can filter each of 
them through the appropriate Green's function, to induce different rightwards and 
leftwards shifts, aiming at the elimination of their intrinsic binocular disparities. By 
evaluating the degree of matching between the shifted inputs, for instance by computing the 
squared magnitude of their difference, we can then obtain an estimate of the disparity 
information encoded by the original stereo pair. 
We have implemented such approach using the affine Green's filter of equation (14), 
keeping its σ parameter fixed, and varying Ux , in order to obtain different image shifts. Our 
preliminary results have proven encouraging, as shown by Figure 8 below. 
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                           (a)                                              (b)                                                 (c) 

    
                           (d)                                              (e)                                                 (f) 

Fig. 8.  Green's function approach to stereoscopic disparity estimation. (a) and (b): random-
dot stereogram pair. (d) and (e) : real-world stereogram. (c) and (f) : estimated disparity 
maps. 

6. Conclusion 

We have reviewed the computer vision applications of Green's functions of image matching 
equations. Green's functions of both uniform- and affine-matching second-order differential 
equations have been considered, and we have illustrated their use for the computer vision 
problems of edge detection, monocular shape estimation, and stereoscopy. The Green's 
filters considered are essentially point-spread functions which have proven able to model 
the image-plane projection of a broad class of motions, along with their associated blur 
effects (Ferreira Jr. et al., 2004). As shown here, such motion modeling capability makes 
them suitable for a unifying approach to several low-level vision processes, whose full 
consequences still remain to be explored. This work has been supported by CNPq-Brasil. 
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1. Introduction    

Simultaneous localization and mapping (SLAM) requires multi-modal sensors, such as 
ultrasound, range, infrared (IR), encoder or odometer, and multiple visual sensors. 
Recognition-based localization is considered as the most promising method of image-based 
SLAM (Dissanayake, 2001). In practice, we cannot rely on the basic encoder output under 
kidnapping or shadowing environment. IR-LED cameras are recently used to deal with such 
complicated conditions. Map building becomes more prone to illumination change and 
affine variation, when the robot is randomly moving. The most popular solution for the 
robust recognition method is scale-invariant feature transform (SIFT) approach that 
transforms an input image into a large collection of local feature vectors, each of which is 
invariant to image translation, scaling, and rotation (Lowe, 2004).  The feature vector is 
partially invariant to illumination changes and affine (or three-dimensional) projection.  
Such local descriptor-based approach is generally robust against occlusion and scale 
variance. In spite of many promising factors, SIFT has many parameters to be controlled, 
and it requires the optimum Gaussian pyramid for acceptable performance.  Intensity-based 
local feature extraction methods cannot avoid estimation error because of low light-level 
noise (Lee, 2005).  Corner detection and local descriptor-based methods fall into this 
category. An alternative approach is moment-based invariant feature extraction that is 
robust against both geometric and photometric changes. This approach is usually effective 
for still image recognition.  While a robot is moving, the moment-based method frequently 
recognizes non-planar objects, and can hardly extract invariant regions under illumination 
change. This paper presents a real-time local keypoint extraction method in the two-
dimensional wavelet transform domain. The proposed method is robust against 
illumination change and low light-level noise, and free from manual adjustment of many 
parameters. Fig 1 displays whole structure of this paper.  
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Figure 1. Conceptual flowchart of the whole structure  

The paper is organized as follows. In section 2, noise adaptive spatio-temporal filter (NAST) 
is proposed to remove low light-level noise as a preprocessing step.  Section 3 describes the 
proposed real-time local feature extraction method in the wavelet transform domain. Section 
4 summarizes various experimental results by comparing DoW with SIFT methods, and 
section 5 concludes the paper.  

2. Noise Adaptive Spatio-Temporal Filter  

The proposed NAST algorithm adaptively processes the acquired image to remove low light 
level noise. Depending on statistics of the image, information of neighboring pixels, and 
motion, the NAST algorithm selects a proper filtering algorithm for each type of noise. A 
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conceptual flowchart of the proposed algorithm is illustrated in Fig. 2.  The proposed NAST 
algorithm has four different operations which are applied to the low light images.  

Figure 2. Conceptual flowchart of the proposed algorithm  

2.1 Noise Detection Algorithm  

The output of the noise detection block determines the operation of filtering blocks. The 
proposed spatial hybrid filter (SHF) can be represented as  

2.2 Filtering Mechanism of SHF  

If the central pixel in the window (W) is considered to be noise (i.e., n(i,j) =1in the noise 
map N), it is substituted by the median value of the window as a normal median filter. Then  
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the noise cancellation scheme in SHF is extended to the correlated pixels in the local 
neighborhood ( x(i, j ) where n (i, j ) 1  and at least one n (k,l) =1 in W). In order to  

identify the correlated noise, the de-noised pixel value x (i, j ) can be defined as  

2.3 Statistical Domain Temporal Filter (SDTF) for False Color Noise (FCN) Detection 
and Filtering  

3. A New Method for Local Feature Detector Using 2D Discrete Wavelet 
Transform  

In this section 2D discrete wavelet transform is briefly described as a theoretical background 
(Daubechies, 1998). Based on theory and implementation of 2D discrete wavelet transform, 
the DoW-based local extrema detection method is presented.  

3.1 Characteristics of 2D Wavelet Transform  

Human visual characteristics are widely used in image processing.  One example is the use 
of Laplacian pyramid for image coding.  SIFT falls into the category that uses Laplacian 
pyamid for scale-invariant feature extraction [3].  On the other hand wavelet transform is a 
multiresolution transform that repeatedly decompose the input signal into lowpass and 
highpass components like subband coding [7,8]. Wavelet-based scale-invariant feature 
extraction method does not increase the number of samples in the original image, which is 
the case of the Gaussian pyramid-based SIFT method.  Wavelet transform can easily reflect 
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human visual system by multiresolution analysis using orthogonal bases[12]. Because the 
wavelet-based method does not increase the number of samples, computational redundancy 
is greatly reduced, and its implementation is suitable for parallel processing.  

3.2 Difference of Wavelet in the Scale Space  

Most popular wavelet functions include Daubechies [7] and biorthogonal wavelet [10]. 
Although Daubechies designed a perfect reconstruction wavelet filter, it does not have 
symmetry.  In general image processing applications symmetric biorthogonal filter is 
particularly suitable[10], but we used Daubechies coefficient set{DB2, DB10, DB18, DB26, 
DB34, DB42} for just efficient feature extraction purpose.  

Figure 3. Structure of Difference of Wavelet

A. Parameter Decision for Wavelet Pyramid  

In order to construct the wavelet pyramid, we decide the number of Daubechies coefficients 
and approximation levels, which can be considered as a counterpart of the DoG-based scale 
expansion.  Fig. 4 shows that DB6 provides the optimum local key points, and Fig. 5 shows 
that approximation level 3 is the most efficient for matching. Although larger coefficients 
have better decomposition ability, we used DB2 as the first filter, and increased the step by 
8. Because all DB filters have even numbered supports, difference between adjacent DB 
filters’ support is recommended to be larger than or equal to 4 for easy alignment. In this 
work we used difference of 8, because difference of 4 provides almost same filtered images.  
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Table 1 summarizes results experimental of processing time and matching rate using 
different wavelet filters in the SIFT framework. Coefficient set of the first row provides the 
best keypoint extraction result with significantly reduced computational overhead. The 
combination given in the second row is the best in the sense of matching time and rate.  

Table 1. Various coefficient sets of Daubechies coefficients in the SIFT framework for 
measuring processing time and matching rate under low light(0.05lux) condition.  

B. Wavelet-like Subband Transform 

As shown in Fig. 3, the proposed wavelet pyramid is constructed using six Daubecies 
coefficient sets with three approximation levels.  Because the length of each filter is even 
number, we need appropriate alignment method for matching different scales, as shown in 
Fig. 6, where DB10 is used for 320×240 input images.  

Figure 6. Proposed alignment method for different approximation levels  

3.3 Local Extrema Detection and Local Image Descriptors  

In the previous subsection we described the detail construction method for wavelet pyramid 
and DoW.  In keypoints extraction step, we used min-max extrema with consideration of 
aligning asymmetrically filtered scales. In order to extract scale-invariant feature points, we 
compute DoW in the scale space, and locate the minimum and maximum pixels among the 
neighboring 8 pixels and 18 pixels in the upper and lower-scale images. Such extrema 
become scale-invariant features. DoWbased scale space is constructed as shown in Fig. 7. 
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For each octave of scale space, the initial images are repeatedly convolved with the 
corresponding wavelet filter to produce the set of scale space images shown in the left. DoW 
images are shown in the center, and in the right maxima and minima of the difference of 
wavelet images are detected by comparing a pixel, marked with ×, to its 26 neighbors in 
three 3 ×3 templates, marked with circle. For discrete wavelet transform, we used six 
different sets of Daubechies coefficients to generate a single octave, and make each 
difference image by using three octaves as  

Equation (5) defines how to make a DoW image using two wavelet transformed images. 
Feature points obtained by the proposed method are mainly located in the neighborhood of 
strong edges. DoW also has computational advantage to DoG because many octaves can be 
generated in parallel.  

Figure 7. Maxima and minima of the difference of Wavelet images are detected by 
comparing a pixel (marked with X) to its 26 neighbors in 3×3regions at the current and 
adjacent scales (marked with circles)  

4. Experimental Result  

We first enhanced a low light - level image using the proposed NAST filter, as shown in 
Fig.8. 

(a)                                                     (b) 
Figure 8. (a) Input low light-level image with significant noise and (b) NAST filtered image  

Comparison between DoG-based SIFT and the proposed DoW methods is shown in Fig. 
9.As shown in Fig. 8, the proposed DoW method outperforms the DoG-based SIFT in the 
sense of both stability of extracted keypoints and computational efficiency.Fig. 10, 
Compares performance of combined NAST and DoG method with the DoG-based SIFT 
algorithm. 
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(a)                              (b)                                     (c)                            (d)  

Figure 9. Keypoint extraction results: (a) DoG, (b) DoW, and (c, d) translation of (a) and (b), 
respectively

(a)                                        (b)                                        (c)  

Figure 10. Keypoints extraction results under low light-level condition using DoG, (b) DoG 
with NAST, and (c) DoW with NAST  

Table 2 shows performance evaluation for processing time, matching rate and the PSNR in 
dB is obtained by using pre-filtering algorithm. The low pass filter(LPF)[13] were simulated 
for comparison with the NAST filter. In order to measure PSNR, we add synthetic noise 
(20dB PCN, and 15dB FCN) to the acquired low light images. This work was tested using a 
personal computer with Pentium- 3.0GHz.  

Table. 2. Performance evaluation of DoG and DoW with NAST filter  

5. Conclusion  

The paper presents a local feature detection method for vSLAM-based self-localization of 
mobile robots.  Extraction of strong feature points enables accurate self-localization under 
various conditions.  We first proposed NAST pre-processing filter to enhance low light-level 
input images. The SIFT algorithm was modified by adopting wavelet transform instead of 
Gaussian pyramid construction.  The wavelet-based pyramid outperformed the original 
SIFT in the sense of processing time and quality of extracted keypoints. A more efficient 
local feature detector and a compensation scheme of noise due to the low contrast images 
are also proposed. The proposed scene recognition method is robust against scale, rotation, 
and noise in the local feature space.  
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1. Introduction     

Genetic algorithms are wide class of global optimization methods. As well as neural 
networks and simulated annealing, genetic algorithms are an example of successful using of 
interdisciplinary approach in mathematics and computer science. Genetic algorithm 
simulates natural selection and evolution process, which are well studied in biology. In most 
cases, however, genetic algorithms are nothing else than probabilistic methods, which are 
based on principles of evolution. The idea of genetic algorithm appears first in 1967 in J. D. 
Bagley’s thesis (Bagley, 1967). The theory and applicability was then strongly influenced by 
J. H. Holland, who can be considered as the pioneer of genetic algorithms (Holland, 1992). 
Since then, this field has witnessed a tremendous development. 
There are many applications where genetic algorithms are used. Wide spectrum of problems 
from various branches of knowledge can be considered as optimization problem. This 
problem appears in economics and finances, cybernetics and process control, game theory, 
pattern recognition and image analysis, cluster analysis etc. Also genetic algorithm can be 
adapted for multicriterion optimization task for Pareto-optimal solutions search. But most 
popular applications of genetic algorithm are still neural networks learning and fuzzy 
knowledge base generation. 
There are three ways in using genetic algorithms with neural networks: 
1. Weight learning. Optimal net weights are found with genetic algorithm when 

conventional methods (e.g. backpropagation) are not applicable. It is suitable when 
continuous activation function of neuron (such as sigmoid) is used, so error function 
become multiextremal and conventional method can find only local minimum. 

2. Architecture optimization. Genetic algorithm is used for finding optimal net 
architecture from some parameterized class of net architectures. 

3. Learning procedure optimization. In this expensive but effective method genetic 
algorithm is used for finding optimization parameters of learning function (weight 
correction function). Usually this method is used with architecture optimization 
simultaneously. 

Genetic fuzzy systems are other popular application of genetic algorithms. Fuzzy system 
design consists of several subtasks: rule base generation, tuning of membership function 
and tuning of scaling function. All this tasks can be considered as optimization problem, so 
genetic algorithm is applicable (Cordon et al., 2004). 
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The optimization problem solved by genetic algorithms in general can be formulated as: 

 )(max xf
Xx

 (1) 

where X is search space, objective function f is total function in X, f: X . Some particular 
cases of this problem are well studied and solution methods are well known. For instance it 
is mentioned linear and convex programming problem. In general, however, this problem is 
very complex and non-solvable. It means that solution cannot be obtained in finite iteration 
steps.
We restrict problem (1) and consider case of compact and simple structure of set X, e.g. X is 
hypercube and it is known that f reach maximum inside X. In this case complexity of 
optimization task is depended from complexity of objective function f only. In common case 
f is non-smooth (non-differentiable) multiextremal function. Even through f is differentiable 
and conventional optimization methods e.g. gradient descent are applicable there are no 
guarantee that global optimum will be found.  
There are two wide classes of optimization methods to solve global optimization problem: 
deterministic and stochastic. First obtain solution via almost complete search all over the X,
so these methods are slow and non-efficient, but guarantee optimum finding. Also using of 
these methods requires some restrictions on objective function, so in several cases 
deterministic methods are not applicable. Second class is stochastic methods, which are 
faster and more efficient and universal than deterministic but has one essential shortcoming: 
maximization of objective function is not guarantee. Most of stochastic algorithms evaluate 
objective function in some random points of search space. Then sample of these points is 
processed and some pointes are saved for the next iteration. 
As the practice shows in many instances it is acceptable to find not best but just well 
solution, so stochastic methods and genetic algorithms particularly are very effective. 

2. Basic Ideas and Concepts 

We consider optimization problem (1). Genetic algorithm does not work with problem (1) 
directly, but with coded version of them. Search space X is mapped into set of string S.
Function c(x): X S is called coding function. Conversely, function d(s): S X is called 
decoding function and c d(s) = s should be done for any string s. In practice, coding 
functions, which have to be specified depending on the needs of the actual problem, are not 
necessarily bijective, so d c  is not identical map over X, but it is over D = d(S).

Usually, S is finite set of binary strings: 

mS }1,0{=  (2) 

where m is obviously length of string. Generally simple binary code or Gray code is used. 
Note that S is finite, but X is commonly not. So, we quantize search space and algorithm 
finds solution approximately, but solution precision can be made as high as needed by 
increasing m.
Thus, we replace problem (1) with follows: 

 )(max sf
Ss

 (3) 
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where under f(s) we imply f(d(s)).
Terminology particularly borrowed from natural genetic and evolution theory is commonly 
used in framework of genetic algorithms. Below we give some of most often used terms. 
Member of set S is called individual. Individual in genetic algorithm is identified with 
chromosome. Information encoded in chromosome is called genotype. Phenotype is values of 
source task variables corresponding to genotype. In other words phenotype is decoded 
genotype. In simple genetic algorithm chromosomes are binary string of finite length. Gene
is a bit of this string. Allele is value of gene, 0 or 1. Population is finite set of individuals. 
Objective function of optimization problem is called fitness function.
Fitness of individual is value of fitness function on phenotype corresponding individual. 
Fitness of population is aggregative characteristic of fitness of individuals. Fitness of best 
individual or average fitness of individuals is commonly used as population fitness in 
genetic algorithms. 
In process of evolution one population is replaced by another and so on, thus we select 
individuals with best fitness. So in the mean each next generation (population) is fitter than 
it predecessors. Genetic algorithm produces maximal fitness population, so it solve 
maximization problem. Minimization problem obviously reduced to maximization problem. 
In simple genetic algorithm size of population n and binary string length m is fixed and 
don’t changes in process of evolution. We can write basic structure of simple genetic 
algorithm in the following way: 
Compute initial population; 
WHILE stopping condition not fulfilled DO BEGIN 
 select individuals for reproduction; 
 create offsprings by crossing individuals; 
 eventually mutate some individuals; 
 compute new generation; 
END
As obvious from the above stated algorithm, the transition from one generation to the next 
consists of three basic components: 
Selection: Mechanism for selecting individuals for reproduction according to their fitness. 
Crossover: Method of merging the genetic information of two individuals. In many respects 
the effectiveness of crossover is depended on coding. 
Mutation: In real evolution, the genetic material can by changed randomly by erroneous 
reproduction or other deformations of genes, e.g. by gamma radiation. In genetic 
algorithms, mutation realized as a random deformation of binary strings with a certain 
probability. 
These components are called genetic operators. We consider these operators more detailed 
below.
Compared with conventional continuous optimization methods, such as gradient descent 
methods, we can state the following significant differences: 
1. Genetic algorithms manipulate coded versions of the problem parameters instead of 

the parameters themselves, i.e. the search space is S instead of X itself. So, genetic 
algorithm finds solution approximately. 

2. 2. While almost all conventional methods search from a single point, genetic algorithm 
always operates on a whole population of points (strings-individuals). It improves 
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robustness of algorithm and reduces the risk of becoming trapped in a local stationary 
point.

3. Normal genetic algorithms do not use any auxiliary information about the objective 
function value such as derivatives. Therefore, they can be applied to any kind of 
continuous or discrete optimization problem. 

4. Genetic algorithms use probabilistic transition operators while conventional methods 
for continuous optimization apply deterministic transition operators. More specifically, 
the way a new generation is computed from the actual one has some random. 

3. Simple genetic algorithm 

Here we consider simpler genetic algorithm in more detail. As previously noted let m is 
binary string space dimension, n is population size. The generation at time t is a list of n
binary strings, which we will denote with 

 ),...,,(= ,,2,1 tnttt bbbB  (4) 

Stated above basic structure of genetic algorithm can be written more detailed in the 
following way: 
t := 0; 
Compute initial population B0;
WHILE stopping condition not fulfilled DO BEGIN 
 FOR i:=1 TO n DO 
  select bi,t+1 from Bt

 FOR i:=1 TO n STEP 2 DO 
  with probability pc perform crossover of bi,t+1 and bi+1,t+1

 FOR i:=1 TO n DO 
  with probability pm eventually mutate bi,t+1

t:=t+1;
END
We don’t give concrete expression for stopping condition because these conditions have no 
features in comparison with other global optimization methods. So, as such conditions we 
can take restriction on number of iterations or some phenotype convergence conditions. Last 
can be formulated in terms of maximal or average fitness.  
Commonly used procedure to compute initial population consist in random selection of n
points uniformly distributed over the search space. If additional information about decision 
region is presented, it can be used for initial population computation. 

3.1 Selection 

Selection is the component which guides the algorithm to the solution by preferring 
individuals with high fitness over low-fitted ones. It realizes “The fittest will survive” 
principle. Selection can be a deterministic operation, but in most implementations it has 
random components. 
One variant, which is very popular nowadays, is the following scheme, where the 
probability to choose a certain individual is proportional to its fitness. It can be regarded as 
a random experiment with 
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Of course, this formula only makes sense if all the fitness values are positive. If this is not the 
case, a increasing transformation : + must be applied. In simple case shift  = x+M
can be used, where M is sufficiently great. M is chosen based upon some information about 
fitness function. If there no such information other transformations must be applied, such as 
exponential  = ax or shifted arctangent = arctan(x)+ /2. Then the probabilities can be 
expressed as 
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Everywhere below we suppose that function f is positive. 
We can force the property (5) to be satisfied by applying a random experiment which is, in 
some sense, a generalized roulette game. In this roulette game, the slots are not equally 
wide, i.e. the different outcomes can occur with different probabilities. Figure 1 gives a 
graphical interpretation of this roulette wheel game. 

Fig. 1. A graphical representation of roulette wheel selection 

For obvious reasons, this method is often called proportional selection. Mean of copies of 
individual bi,t which will be selected for follows crossover can be expressed as 

npbcopiesofnumber titi ,, =)(  (7) 

It is easy to see that ill-fitted individuals have slim chance to leave offsprings, so they leave 
population very early. In some cases, this can be the cause of premature convergence of 
algorithm into local maxima. On the other hand, refinement in the end phase can be slow 
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since the individuals have similar fitness values. These problems can be overcome by using 
alternative selection schemes: 
Linear rank selection. Rank of the fitness as the basis of selection is used instead of the 
values themselves. 
Tournament selection. In this scheme, a small group of individuals is sampled from the 
population and the individual with best fitness is chosen for reproduction. This selection 
scheme is also applicable when the fitness function is given in implicit form, i.e. when we 
only have a comparison relation which determines which of two given individuals is better. 

3.2 Crossover 

In sexual reproduction, as it appears in the real world, the genetic material of the two 
parents is mixed when the gametes of the parents merge. Usually, chromosomes are 
randomly split and merged, with the consequence that some genes of a child come from one 
parent while others come from the other parents. 
This mechanism is called crossover. It is a very powerful tool for introducing new genetic 
material and maintaining genetic diversity, but with the outstanding property that good 
parents also produce well-performing children or even better ones. 
Basically, crossover is the exchange of genes between the chromosomes of the two parents. 
In the simplest case, this process in genetic algorithms is realized by cutting two strings at a 
randomly chosen position (crossing point) and swapping the two tails. This process, which 
called one-point crossover, is visualized in Figure 2. In genetic algorithm selected 
individuals paired in some way and then crossing over with probability pc.

Fig. 2. One-point crossover of binary strings 

One-point crossover is a simple and often-used method for genetic algorithms which 
operate on binary strings. For other problems or different coding function, other crossover 
methods can be useful or even necessary. We mention some of them, for more details see 
(Goldberg, 1989). 
N-point crossover. Instead of only one, N breaking points are chosen randomly. Every 
second section is swapped. Among this class, two-point crossover is particularly important. 
Segmented crossover. Similar to N-point crossover with the difference that the number of 
breaking points can vary. 
Uniform crossover. For each position, it is decided randomly if the positions are swapped. 
Shuffle crossover. First a randomly chosen permutation is applied to the two parents, then 
N-point crossover is applied to the shuffled parents, finally, the shuffled children are 
transformed back with the inverse permutation. 
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3.3 Mutation 

Mutation is powerful factor of variability and consists in random deformation of genetic 
material. In real world these deformations take place as result of radioactivity, ultraviolet 
radiation or viruses influence. In real reproduction, the probability that a certain gene is 
mutated is almost equal for all genes. Mutation in genetic algorithm is analogue of natural 
one: each gene of chromosome is inverted with probability pm, so this mutation is called 
uniform mutation. Also, in genetic algorithms alternative mutation methods are used. We 
mention some of them, more detailed see (Goldberg, 1989). 
Inversion of single bits. With probability pm, one randomly chosen bit is negated. 
Bitwise inversion. The whole string is inverted bit by bit with probability pm.
Random mutation. With probability pm, the string is replaced by a randomly chosen one.  

4. Variants 

We consider simple variant of genetic algorithm, but it is sufficiently effective. Thus, there 
are some ways to improve efficiency and robustness. In this section we consider some of this 
ways.
Elitism is very effective element that realizes “best must survive” principle. It can be added 
into any selection scheme and consists in follows: best individual from parent population is 
compared with best individual from offspring population and best of them is added into 
next generation. Elitism guarantees that next generation fitness will be better or equal than 
parent generation fitness. Elitism is often-used element, but it should, however, be used 
with caution, because it can lead to premature convergence. 
Adaptive genetic algorithms are algorithms whose parameters, such as the population size, the 
crossing over probability, or the mutation probability are varied while the genetic algorithm 
is running. A simple variant could be the following: The mutation rate is changed according 
to changes in the population; the longer the population does not improve, the higher the 
mutation rate is chosen. Vice versa, it is decreased again as soon as an improvement of the 
population occurs. 
Hybrid genetic algorithms are used when additional auxiliary information such as derivatives 
or other specific knowledge is known about objective function. So, conventional method, 
such as gradient descent is applicable. The basic idea is to divide the optimization task into 
two complementary parts. The coarse, global optimization is done by the genetic algorithm 
while local refinement is done by the conventional method. A number of variants is 
reasonable:
1. The genetic algorithm performs coarse search first. After it is completed, local 

refinement is done. 
2. The local method is integrated in the genetic algorithm. For instance, every k

generations, the population is doped with a locally optimal individual. 
3. Both methods run in parallel: All individuals are continuously used as initial values for 

the local method. The locally optimized individuals are re-implanted into the current 
generation. 

In self-organizations genetic algorithms not only data is object of evolution. Parameters of 
genetic algorithm, such as coding function or genetic operator parameters, are optimized 
too. If this is done properly, the genetic algorithm could find its own optimal way for 
representing and manipulating data automatically. 
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5. Analysis 

As stated above, genetic algorithm is stochastic optimization method and not guarantees 
convergence to solution. Therefore, we consider convergence in terms of mean. 
Convergence analysis becomes complicated by using three stochastic operators: selection, 
crossover and mutation that have many variations, so there are many different algorithms. 
We consider simple genetic algorithm with fixed population size n operates in space of 
binary string with fixed length m. It is assumed that one-point crossover, uniform mutation 
and proportional selection are used. 

5.1 The Schema Theorem 

Analysis of genetic algorithm we start from classic result of Holland – the so-called Schema 
Theorem. But at first we’ll make some definitions. 
Definition 1. A string H = h1…hm over the alphabet {0, 1, *} is called a (binary) schema of 
length m. An hi = 0 or 1 is called a specification of H, an hi = * is called wildcard. Schemata can 
be considered as specific subsets of {0, 1}m.
If we interpret binary strings space as hypercube with dimension m, then schemata can be 
interpreted as hyperplanes (see Figure 3). 

Fig. 3. Schemata as hyperplanes in hypercube 

Obviously number of schemata is 3m.
Definition 2. A string S = s1…sm over the alphabet {0, 1} fulfills the schema H = h1…hm if and 
only if it matches H is all non-wildcard positions: 

iij hshji =≠∈∀ :*}|{  (8) 

Definition 3. The number of specifications of a schema H is called order and denoted as 

|*},1|{|)( ≠≤≤= ihmiiHO  (9) 

Definition 4. The distance between the first and the last specification 
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(H) = max {i | hi  *} – min {i | hi  *} (10) 

is called the defining length of a schema H.
Also let us make some notations: 
The number of individuals which fulfill H at time step t are denoted as rH,t.
The observed average fitness at time t is denoted as: 
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The observed average fitness of schema H in time step t is denoted as: 
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The following theorem holds. 
Theorem (Schema Theorem—Holland 1975). 
The following inequality holds for every schema H:
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where E is mean of number of next generation individuals fulfills schema H. More generally 
statement of schema theorem can be formulated as follows: 
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where estimations Pc and Pm depend only from schema H on one hand and crossover and 
mutation methods correspondingly on another. Such estimations can be obtained for all 
considered variants of crossover and mutation operators. One can see (Holland, 1992) for 
full proof of schema theorem. 
The schema theorem answer the question what schemata has more chance to survive, but 
say nothing about convergence in essence. 

5.2 Building blocks hypothesis 

As obviously follow from schema theorem high-fitness schemata with low order and short 
length have more chance to survive in process of evolution. Let pm is sufficiently small, then 
(13) takes the form: 
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If population size is sufficiently great, then deviations from average E(rH,t+1) are very small. 
If we disregard them follows statement take place: 
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It is obviously follows from this recurrent expression that number of individuals fulfills 
high-fitness schemata with low (H) and O(H) exponentially grows in process of evolution. 
Such schemata, i.e. well-fitted schemata with short length and low order, are called building 
blocks. Goldberg conjecture follows: A genetic algorithm creates stepwise better solutions by 
recombining, crossing, and mutating short, low-order, high-fitness schemata. This conjecture is 
called building blocks hypothesis (Goldberg, 1989).  
If building blocks hypothesis is true, key role for convergence play coding method. Coding 
must be realized building blocks hypothesis concept. For example consider two examples of 
fitness function. First is an affine linear fitness function: 

i
m

i
i scasf +=

=1
)(  (17) 

where si is ith allele of chromosome s.
Second function correspond “needle-in-haystack” problem: 
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In the linear case, the building block hypothesis seems justified, i.e. the fitness is computed 
as a linear combination of all genes. It is easy to see that the optimal value can be 
determined for every gene independently. For the second function, however, it cannot be 
true, since there is absolutely no information available which could guide a genetic 
algorithm to the global solution through partial, sub-optimal solutions. In other words, the 
more the positions can be judged independently, the easier it is for a genetic algorithm. On 
the other hand, the more positions are coupled, the more difficult it is for a genetic 
algorithm (and for any other optimization method). There is a special term derived from 
biology for this phenomena – epistasis. High epistatic problem are very difficult to solve. 
Genetic algorithms are appropriate for medium epistatic problems, and low epistatic problem 
can be solved much more efficiently with conventional methods. 
Follow question may arise after analysis: what a genetic algorithm really processes, strings 
or schemata? The answer is both. Nowadays, the common interpretation is that a genetic 
algorithm processes an enormous amount of schemata implicitly and simultaneously. This 
is accomplished by exploiting the currently available, incomplete information about these 
schemata continuously, while trying to explore more information about them and other, 
possibly better schemata. 

5.3 The Convergence Theorem 

The Schema Theorem clarifies some aspects of the mechanism how genetic algorithm works.  
Building blocks hypothesis conjecture some assumption about convergence, but it isn’t 
proven. Some results about convergence were obtained by author. Although genetic 
algorithm not guarantees solution finding, it converge in the mean. Below we formulate 
Theorem of Convergence of genetic algorithms. 
As stated above, we consider simple genetic algorithm with fixed population size n operates 
in space of binary string with fixed length m. It is assumed that one-point crossover with 
probability pc, uniform mutation with probability pm and proportional selection are used. 
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Also we assume that elitism is incorporated in selection procedure, so best individual 
always survive. Hence, the following theorem holds: 
Theorem.  
Let pm  0.5, and S = )1( m

mp−  (2 – (1 – pc)n) < 1. 
Then,

 *))((lim fBf kk
=

∞→
 (19) 

where Bk is the population after the kth iteration step of the genetic algorithm, f(Bk) is the 
maximal fitness over the population Bk, and f* is the required optimal value. 
E(f(Bk))converges to f* non-decreasingly. Proof of this theorem can be found in (Sharapov & 
Lapshin, 2006).  
There is an interesting corollary corresponding case of zero pc.
Corollary. Let pm  0.5, pc = 0.  
Then,

 *))((lim fBf kk
=

∞→
 (20) 

where Bk is the population after the kth iteration step of the genetic algorithm, f(Bk) is the 
maximal fitness over the population Bk, and f* is the required optimal value and ]2/[m

mC is 
binomial coefficient. E(f(Bk))converges to f* non-decreasingly. Evidently, crossover absence 
gives us everywhere convergent algorithm. 

6. Real-coded evolutionary optimization methods 

Most of optimization problems have real-valued parameters (i.e. X is subset of N, where N
is problem dimension). It is clear that discretization approach applied in simple genetic 
algorithm has several shortcomings: 
1. Continuum set of possible values is reduced to finite set of binary strings. So we limit 

considered search space, and if solution of task is located outside considered region, 
we will not find it. 

2. The accuracy of the solution is limited by the discretization width 1/(2m–1), where m is 
length of binary string. Although precision can be improved by increasing m, it will 
require more computer power and time. Computational complexity grows 
exponentially with m growth. 

3. It is complicated to choose appropriate coding method. Most often, no reasonable 
building blocks exist. 

For these reasons, variants of genetic algorithms which are especially adapted to real-valued 
optimization problems have been proposed. 

6.1 Real-coded genetic algorithms 

Structure of real-coded genetic algorithm is not to differ from one considered in section 3. 
But chromosomes in real-coded genetic algorithms are represented as N-dimensional 
vectors of real numbers, where N is dimension of optimization problem: 

),...,( 1 Nxxb =  (21) 



Vision Systems - Segmentation and Pattern Recognition 418

All selection schemes are applicable without any modifications. Crossover and mutation 
must be adapted. 
In real-coded genetic algorithms follows crossover operators are used most-often: 
Flat crossover. Two parents b1 = (x1,1, …, x1,N) and b2 = (x2,1, …, x2,N) are given, a vector of 
random values from the unit interval  = ( 1, . . . , N) is chosen. The offspring b’ = (x’1, …, 
x’N) is computed as a vector of linear combinations in the following way (for all i = 1, …, N):

iiiii xxb ,2,1 )1(' −+=  (22) 

 Second offspring from pair is computed analogously. 
BLX-  crossover (Herrera et al., 1998) is an extension of flat crossover which allows an 
offspring allele x’i to be also located outside the interval [min(x1,i , x2,i), max(x1,i , x2,i)]. In 
BLX-  crossover, each offspring allele x’i is chosen as a uniformly distributed random value 
from the interval 

]),max(,),[min( ,2,1,2,1 IxxIxx iiii ⋅+⋅−  (23) 

where I = max(x1,i , x2,i) – min(x1,i , x2,i).  
The parameter  has to be chosen in advance. For  = 0, BLX-  crossover becomes identical 
to flat crossover. 
Simple and discrete crossover is analogous to considered above classical one-point and 
uniform crossover. 
The following mutation operators are most common for real-coded genetic algorithms: 
Random mutation. For a randomly chosen gene i of an individual b = (x1, …, xN), the allele xi

is replaced by a randomly chosen value from a predefined interval [ai, bi].
Non-uniform mutation. In non-uniform mutation, the possible impact of mutation 
decreases with the number of generations (Michalewicz, 1996). Assume that tmax is the 
predefined maximum number of generations. Then, with the same setup as in random 
mutation, the allele xi is replaced by one of the two values 
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The choice which of the two is taken is determined by a random experiment with two 
outcomes that have equal probabilities 0.5 and 0.5. The random variable (t, x) determines a 
mutation step from the range [0, x] in the following way: 

 )1(),( )/1( max
rttxxt −−⋅=  (25) 

In this formula,  is a uniformly distributed random value from the unit interval. The 
parameter r determines the influence of the generation index t on the distribution of 
mutation step sizes over the interval [0, x]. 

6.2 Evolutionary strategies 

Evolutionary strategies are real-coded global optimization methods were developed in late 
1960s mainly by I. Rechenberg independently from Holland’s work on genetic algorithms.  
Chromosome in evolutionary strategies is represented by 2N dimensional vector, where N is 
dimension of problem: 
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),...,;,...,( 11 NNxxb =  (26) 

The first half (x1, …, xN) corresponds to the potential solution of the optimization problem 
like in real-coded genetic algorithms. The second half ( 1, …, N) defines the vector of 
standard deviations for the mutation operation. 
As usual, there are two means of modifying genetic material in evolutionary strategies: a 
recombination operation that could be understood as some kind of crossover and mutation. 
Unlike genetic algorithms, mutation plays a more central role in evolutionary strategies. 
Usually as recombination operator flat or discrete crossover applied in real-coded genetic 
algorithm (see previous section) are used. Most often in evolutionary strategies flat 
recombination with  = 0.5 is used (so-called intermediate recombination). 
Mutation in evolutionary strategies consists of two phases. Firstly, normal distributed noise 
is added to each allele xi. More specifically, for all i = 1, …, N, the mutated allele is given as 

),0(' 2
iii Nxx +=  (27) 

where N(0, 2i) is normally distributed random variable with zero mean and standard 
deviation i.
Secondly, we added logarithmically normal distributed noise to i alleles: 

))1,0()1,0('exp(' iii NN +⋅=  (28) 

The factor exp ( ’ N(0,1)) is an overall factor increasing or decreasing the “mutability” of the 
individual under consideration. Note that N(0,1) is chosen only once for the whole 
individual when it is mutated. The factor exp ( Ni(0,1)) locally adapts the mutation step 
sizes. Note that, in this second factor, the normally distributed random value Ni(0,1) is 
chosen separately for each gene. The adaptation of mutation step sizes in evolutionary 
strategies has the particular advantage that no parameters have to be chosen in advance. 
Instead, they evolve during the run of an evolutionary strategy in a self-organizing way. 
The two parameters  and ’ have to be chosen in advance. Schwefel has proposed to choose 
these parameters in the following way (Schwefel, 1995): 

NN 2

1,
2
1' ==  (29) 

Selection in evolutionary strategies also has some features in comparison with genetic 
algorithms. The nowadays commonly accepted selection and sampling schemes in 
evolutionary strategies are the following: 
(μ + )-strategy: a number of μ parents are selected from the current generation. These μ
parents are used to generate a number of  offsprings, which have been generated by some 
recombination and/or mutation operations. Out of the union of parents and offsprings (in 
total, a number of μ + ), the best μ are kept for the next generation. Note that the (μ + 
)-strategy inherently incorporates elitism. 

(μ, )-strategy: in this scheme, which is nowadays considered the standard 
selection/sampling strategy in evolutionary strategies, again μ parents are selected from the 
current generation and used to generate  offsprings (with the additional restriction μ). 
The parents are discarded completely and the best μ offsprings are kept for the next 
generation. The (μ, )-strategy does not incorporate elitism. 
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Note that both strategies only use the ranking of fitness values. Therefore, they can be 
applied both to minimization and maximization problems, without any need for scaling or 
transforming fitness values. 

6.3 Evolutionary programming 

Idea of evolutionary programming were proposed by L.J.Fogel in the middle of 1960s and 
later extended by his son D.B. Fogel (Fogel, 1992). Evolutionary programming solves same 
tasks in similar ways as real-coded genetic algorithms and evolutionary strategies. An 
important difference evolutionary programming from real-coded genetic algorithms and 
evolutionary strategies is consists in following: evolutionary programming does not use 
crossover or any other kind of exchange of genetic material between individuals. Offsprings 
are generated by mutation only.  
We consider modified evolutionary programming method (Fogel, 1992). As well as 
evolutionary strategies, in this variant of evolutionary programming individual is 
represented by 2N dimensional vector of real values, where N is dimension of problem: 

),...,;,...,( 11 NN vvxxb =  (30) 

The second half of the vector (v1, …, vN) contains the variances of the mutation step sizes, as 
the mutation is done in the following way: 
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Unfortunately, it is not guaranteed that v’i is positive. Therefore, additional measures have 
to be taken to avoid that v’i gets 0 or negative. The parameter  defines volatility of mutation 
factors vi. Ni(0,1) is a value of standard normally distributed random variable which is 
chosen separately for each gene. 
Evolutionary programming uses a kind of combination of tournament and linear rank 
selection. The fitness of an individual b is compared with q other randomly picked 
competitors taken from the union of μ parents and  offsprings. The score wi of the 
individual b is computed as the number of individuals within the q selected ones that have a 
lower fitness than b. The parents and offsprings are ranked according to their score and the 
best μ are selected for the next generation. Note that this selection scheme inherently 
incorporates elitism. Moreover, for large q, it behaves almost in the same way as the (μ + )-
strategy used in evolutionary strategies. 

6.4 Analysis of convergence of real-coded methods 

We will not investigate convergence detailed here and will make only some assertions about 
convergence properties. 
For simplicity we consider the case of evolutionary programming only (see previous 
section), where N = 1. Also let  = μ is used in selection scheme. Let B0 = (b0,1, …, b0,μ) is 
initial population. Individuals in population are descending sorted by fitness, so first 
individual is best of all. After mutation we obtain μ offsprings b’1, …, b’μ. Each of them is 
two-dimensional normally distributed variate. Since genes mutate independently they are 
independent variates. Then consider aggregate population of parents and offsprings: 
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 )',...,';,...,(' 1,01,0 μμ bbbbB =  (32) 

Best individual from this population is kept for the next generation, because its rank is 
maximal among all of them. Let z – best among offsprings b’1…b’μ. Obviously z is two-
dimensional random variable. Then best individual b1,1 of next generation B1 is best of b0,1

and z, i.e. b1,1 = arg max {b0,1, z}. So 

 )}(),(max{)()( 1,01,11 zfbfbfBf ==  (33) 

Assume, that f(z) is absolutely continuous random variate. Let’s consider mean of variate 
f(b1,1) (here and below we suppose that all integrals are exist and converge absolutely): 
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where d(x) is density function of variate f(z). Transom (34): 
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Subintegral expression of second item is obviously non-negative. Therefore 

≥−
+∞

)(
1,0

1,0

0)())((
bf

dxxdbfx  (36) 

Consider the case of equality more detailed. Obviously equality is realized if and only if 
subintegral expression is identically zero, so d(x)  0 on interval (f(b0,1), + ). Hence 
probability 
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It means that improvement of fitness of population is impossible event. Since function f is 
continuous and genes are independent normally distributed variates, it is possible only if 
range of function f and interval (f(b0,1), + ) has no intersections (it could be verified if 
inverse assumption was made), so f(b0,1) is a global maxima of function f.
Thus, we obtain that either Ef(B1)=f(B0) and solution is found or Ef(B1) > f(B0). This deduction 
can be made for any step of algorithm, so following assertion holds: 
If solution is not found on kth step of evolutionary programming algorithm, then  

 Ef(Bk+1) > f(Bk) (38) 

7. Concluding remarks 

We consider simple genetic algorithm and some of variants. Also we have collected several 
important results which provide valuable insight into the intrinsic principles of genetic 
algorithms. Finally we consider real-valued optimization problem and some evolutionary 
method to solve it. Several remarks were made about convergence one of them. But mainly 
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we consider genetic algorithms in itself. The future of this method, however, is in union 
with neural networks and fuzzy systems. Below, we mention some perspective approaches: 
1. Fuzzy genetic programming. Genetic programming is concerned with the automatic 

generation of computer programs. Fuzzy genetic programming combines a simple 
genetic algorithm that on a context-free language with a context-free fuzzy rule 
language. 

2. Genetic fuzzy systems. As mentioned in introduction of this chapter these systems use 
evolutionary methods for rule base generation and tuning. 

3. Genetic fuzzy neural networks.  Genetic fuzzy neural networks are the result of adding 
genetic or evolutionary learning capabilities to systems integrating fuzzy and neural 
concepts. The usual approach of most genetic fuzzy neural networks is that of adding 
evolutionary learning capabilities to a fuzzy neural network. 

4. Genetic fuzzy clustering algorithm. Genetic algorithms can be used in fuzzy clustering. 
Most widely used method is to optimize parameters of so-called C-mean FCM-type 
algorithms, that can improve it performance. Another approach is based on directly 
solving the fuzzy clustering problem without interaction with any FCM-type 
algorithm.
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Genetic Algorithm for Linear Feature Extraction 
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1. Introduction 

Feature extraction is a commonly used technique applied before classification when a 
number of measures, or features, have been taken from a set of objects in a typical statistical 
pattern recognition task. The goal is to define a mapping from the original representation 
space into a new space where the classes are more easily separable. This will reduce the 
classifier complexity, increasing in most cases classifier accuracy. Feature extraction 
methods can be divided into linear and non-linear, depending on the nature of the mapping 
function (Lerner et al., 1998). They can also be classified as supervised or unsupervised, 
depending on whether the class information is taken into account or not. Feature extraction 
can also be used for exploratory data analysis, where the aim is not to improve classification 
accuracy, but to visualise high dimensional data by mapping it into the plane or the 3-
dimensional space. 
The best known linear methods are Principal Component Analysis, or PCA (unsupervised) 
(Fukunaga, 1990), Linear Discriminant Analysis or LDA (supervised) (Fukunaga, 1990; 
Aladjem, 1991; Siedlecki et al., 1988), and Independent Component Analysis or ICA 
(unsupervised) (Cardoso, 1993). Schematically, PCA preserves as much variance of the data 
as possible, LDA attempts to group patterns of the same class, while separating them from 
the other classes, and ICA obtains a new set of features by extracting the less correlated (in a 
broad sense) directions in the data set. On the other hand, well-known non-linear methods 
are: Sammon’s Mapping (unsupervised) (Sammon, 1969; Siedlecki et al. 1988), non-linear 
discriminant analysis or NDA (supervised) (Mao & Jain, 1995), Kohonen’s self-organising 
map (unsupervised) (Kohonen, 1990) and evolutionary extraction (supervised) (Liu & 
Motoda, 1998). Sammon’s mapping tries to keep the distances among the observations using 
hill-climbing or neural network methods (Mao & Jain, 1995; Sammon, 1969), NDA obtains 
new features from the coefficients of the second hidden layers of a multi-layer perceptron 
(MLP) (Mao & Jain, 1995) and Kohonen Maps project data in an attempt to preserve the 
topology. Finally, evolutionary extraction uses a genetic algorithm to find combinations of 
original features in order to improve classifier accuracy. These new features are obtained by 
multiplying, dividing, adding or subtracting the original features. 
In the linear methods, the mapping function is known and simple; therefore, the task is 
reduced to finding the coefficients of the linear transformation by maximising or minimising 
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a criterion. If a proper criterion function is selected, many standard linear algebra methods 
can be applied. However, in many cases a linear mapping may not be powerful enough to 
obtain good results, making it necessary to consider non-linear mappings. 
Non-linear mappings present different functional forms and this often makes their 
application more problem-dependent. Furthermore, since closed-form optimisation 
methods for many non-linear functions are not known or, are in general less stable and 
powerful than their linear counterparts when they do exist, non-parametric estimation 
techniques such as neural networks or iterative optimisation procedures such as hill-
climbing or genetic algorithms are commonly used. 
In this paper, a new linear supervised feature extraction method referred to as GLP (genetic 
linear projections) is proposed. The goal of this method is to find the coefficients of a set of 
linear projections by maximising a certain criterion function. The success confidence rate in 
the new feature space, a criterion that is directly related to the estimated accuracy of a 
Nearest Neighbour classifier, is proposed as the function to maximise. Because no closed-
form solution exists to maximise this criterion, a well-known numerical optimisation 
method, genetic algorithms (GA) (Holland, 1975; Goldberg, 1989), has been employed. 
In Section 2, we describe the GLP algorithm. In Section 3, we present a comparison between 
a linear method (PCA), a non-linear method (NDA) and the proposed GLP algorithm over 
several data sets in terms of both feature extraction and data projection purposes. Finally, 
we present some conclusions and further works in section 4. 

2. Genetic Linear Projection (GLP) 

2.1 Linear feature extraction 

In linear feature extraction, new features are obtained by means of linear projections (LP). A 
LP is defined as follow 

 LP(x) = c1x1 + c2x2 + … cdxd (1)

where x is a d-dimensional vector with components xi and ci are the projection coefficients 
representing the projection axis. By representing the coefficients as a vector, c={c1, c2, … cd}T,
the application of a LP can be redefined as 

 LP(x) = cTx (2)

Each LP defines a new feature to represent x. To define m new features, we need m LPs that 
can be arranged as a m×d matrix (C). By defining the transformation matrix C in this way, a 
new representation of x, y={y1, y2, … ym}T, can be obtained by means of 

 y = Cx (3)

Ideally C should be selected in order to minimise the Bayes error (Duda & Hart, 1973) in the 
new space. Moreover, this expression depends on the a posteriori probability of classes, and 
in general, is not straightforward to obtain. Even when this expression exists, usually no 
tractable expression for the gradient can be obtained. For this reason, linear feature 
extraction methods often employ other less suitable, but simpler, class separability measures 
in order to use closed-form solutions, or they employ gradient-based numerical optimisation 
methods in order to obtain C.
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2.2 Criteria 

In this work, we propose to obtain C by optimising a criterion function that is directly 
related to the Bayes error. The estimated error rate, Ê, of a k-Nearest Neighbour classifier (k-
NN) can be a good option. Under certain convergence conditions, the error rate of a k-NN
classifier offers an optimistic, but very close estimation of the Bayes error (Devijver & 
Kittler, 1982). The Ê can be easily calculated by error count over a test set by the expression, 

n
eE =ˆ  (4) 

where n is the size of the test set, and e is the number of observations that are not correctly 
classified by the k-NN classifier. The estimated success rate of a classifier, Â, is directly 
related to Ê and can be calculated as Â=1-Ê.
Another interesting criterion can be defined using the conditional probability of an 
observation x belonging to a class wi, )|( xwP i . Most statistic classifiers can provide an 
estimation of this value that can be used as a confidence measure for the classified 
observations. In a k-NN classifier, a maximum likelihood estimation of )|( xwP i , )|(ˆ xwP i ,
can be obtained as 

k
kxwP i

i =)|(ˆ (5)

where k is the number of neighbours employed by the k-NN classifier, and ki is the number 
of neighbours of class wi. We formulate the estimated success confidence rate, aĈ , of a classifier 
as

),(ˆ),(
1ˆ xwPww
n

C
x

Xx
xxa θθθδ

∈

′= (6)

where n is the number of observations of a sample X, 
x

wθ  is the real class of Xx ∈ ,
x

wθ′ is 
the class assigned to x by the employed classifier, and ),( ji wwδ  is defined as 

≠
=

=
ji

ji
ji wwif

wwif
ww

0

1
),(δ

 (7) 

In the case the value )|(ˆ xwP i  is always 1, the definition of aĈ  equals the value of Â. The 
criterion can be seen as a confidence measure of the estimated success rate of a classifier. 
When projecting data, the use of aĈ as the optimisation criterion has advantages with 

respect to Â (or Ê). Two projections with the same Â value can have different values of aĈ .

In this situation, the k-NN classifier implemented in the feature space with a better  aĈ value
is expected to show more confidence in its decisions. For this reason, we propose the success 
confidence rate, aĈ , as the criterion to estimate the linear transformation matrix C.
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2.3 Genetic optimisation 

Since no closed-form method is known to optimise the proposed criterion, and since there is 
no tractable expression for its gradient, random numerical optimisation methods must be 
used. 
The number of parameters to be estimated by the optimisation method is m×d, with m being 
the number of LPs or new features to obtain, and with d being the dimensionality of the 
original data. If we want to project high-dimensional data, the number of parameters to 
estimate will be large. For this reason, we propose a GA as an appropriate paradigm to carry 
out the optimisation. 
GAs have proven to be specially useful in large search spaces (Goldberg, 1989). We have 
used a GA with the following properties: 

• An individual is composed of m chromosomes representing the m LPs to search. Each 
chromosome contains d genes, and each gene contains a binary string of b bits that 
encodes a coefficient of the LP in fixed point format. 

• The fitness function is defined as the computed success confidence rate, aĈ , of a k-NN
classifier trained with the projected data obtained from the LPs coded in the individual. 

• The genetic selection scheme uses a rank-based strategy (Mitchell, 1996). In this 
strategy, the probability of being selected is computed from the rank position of the 
individuals. In our case, this method gave a faster convergence than a fitness-
proportionate method. 

• The following settings are used for the rest of the parameters: crossover probability is 
0.6, mutation probability is 0.001, population size is 100 and the maximum number of 
generations is 300.

Finally, since estimating the success confidence rate of a k-NN classifier is a time-consuming 
task, a fast neighbour search by means of kd-trees (Friedman et al., 1977) was implemented 
to reduce the computational cost. Additionally, a micro-grain parallel GA (Shyh-Chang et 
al., 1994) was implemented, allowing the use of several computers to compute individual 
fitness functions, obtaining a linear speedup. 
We refer to the described method as Genetic Linear Projections (GLP). 

3. Comparative study 

3.1 Methodology 

In this section, the GLP method is compared with the well-known PCA (linear, 
unsupervised), and the NDA by means of neural networks (non-linear, supervised). The 
comparison addresses both, feature extraction and data projection (mapping) applications. 
The three methods are applied to sixteen data sets in order to obtain different numbers of 
new features (see Table 1). Since the results obtained by NDA and GLP are not 
deterministic, for this methods five runs are performed with each parameter combination. 
PCA obtains an eigenvector matrix ( ) and an eigenvalue diagonal matrix ( ) from the 
covariance matrix of the original data by means of a closed-form method. The columns of 
correspond to orthonormal linear projections (eigenvectors) in the directions of maximal 
scatter. The values in the diagonal of  (eigenvalues) allow us to sort these directions 
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depending on the scatter. To reduce a d-dimensional original space to an m-dimensional
space, with m<d, we only have to keep the m eigenvectors with the largest eigenvalues. 
The NDA method is based on training a two-hidden layer neural network. This is 
accomplished using the backpropagation algorithm with momentum, obtaining the new 
features from the response of the units of the second hidden layer. The number of units of 
the second hidden layer must be selected to equal the number of desired new features. 
In order to detect possible overfitting problems with the three methods, each data set is split 
into a training set (70%) and a test set (30%). The methods are applied to the training sets, 
testing the performance of the obtained projections in the test sets. In order to estimate the 
success confidence rate, aĈ , a leaving-one-out procedure is employed in the training set for 
small data sets (less than 5000 patterns). A hold-out procedure is used with bigger data sets. 
In the case of feature extraction, the performance of the methods is compared in terms of the 
success rate improvement obtained, as well as in terms of the reduction obtained in the 
number of features. Because the estimate of the success rate is obtained by error count 
(Duda & Hart, 1973), the 95% confidence intervals are provided to correctly compare the 
results. 
For data projection purposes, the performance of these methods is first compared by means 
of visual judgement over the 2-dimensional projections obtained from the data sets, and 
then by means of the success rate of a k-NN classifier computed for each data set in the 
original and projected spaces. This quantitative criterion gives us an idea of how well the 
class structure is preserved by the projections (Mao & Jain, 1995). 

3.2 Corpora 

The corpora are selected from well-known data sets from the UCI repository (Blake & Merz, 
1998). A self-designed synthetic data set, cookies, is also used. This data set has been created 
to represent a well-known case in which PCA does not work well because the maximal 
scatter axes are not the most significant. This corpus consists of two 10-dimensional normal 
distributions with covariance matrices 

,
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010

000001.0

21 =Σ=Σ

and means μ1=(+0.1, 0, 0, …), μ1=( 0.1, 0, 0, …). Each class has 1000 patterns. These 
distributions represent two hyperspheres that are flattened (like cookies) in the dimension 
that separates them.  
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Table 1 summarises the features (size, dimensionality, number classes, ...) of every data set 
used. 

Corpora Size Dim. Classes k New features 

german 1000 24 2 23 [1,2 - 20] 

glass 214 9 6 3 [1,2 - 8 ] 

cookies 2000 10 2 21 [1,2 - 10] 

ionosphere 351 34 2 1 [1,2 - 30] 

iris 151 4 3 15 [1,2,4] 

digits 3000 196 10 3 [1,2 - 100] 

bupa 345 6 2 23 [1,2 - 6] 

pima 768 8 2 19 [1,2 - 8] 

segment 2310 19 7 1 [1,2 - 15] 

sonar 208 60 2 1 [1,2 - 60] 

vehicle 846 18 4 3 [1,2 - 15] 

wine 178 13 3 15 [1,2 - 10] 

waveform 5000 21 3 27 [1,2 - 20] 

page blocks 5473 10 5 3 [1,2 - 10 ] 

sat 6435 36 6 5 [1,2 - 35] 

musk 6598 166 2 3 [1,2 - 100] 

Table 1. Data set features: size, dimensionality, number of classes, optimum k value for the 
k-NN classifier and a list of the new number of features searched for the different methods 
(values with dashes mean that several numbers in the interval have been searched for).   
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Corpora Original PCA NDA GLP 
0.7278 0.7307 0.9882 0.8198 

german 0.7285
(24)

0.7086
(15)

0.7183
(6)

0.7461
(6)

0.7308 0.7244 0.7485 0.8160 
glass 0.5690

(9)
0.6897

(4)
0.7255

(8)
0.7843

(8)

0.4993 0.4993 1.0000 1.0000
cookies 0.4728

(10)
0.4729

(10)
1.0000

(1)
1.0000

(2)

0.8833 0.9083 1.0000 0.9876
ionosphere 0.8198

(34)
0.8378

(8)
0.9174

(1)
0.8899

(2)

0.9725 0.9725 0.9818 0.9909 
iris 0.9268

(4)
0.9268

(4)
0.9750

(4)
0.9500

(4)

0.9522 0.9603 0.9948 0.9581 
digits 0.9504

(196)
0.9559

(40)
0.9122

(15)
0.9578

(100)

0.6901 0.6901 0.8092 0.7557 
bupa 0.5922

(6)
0.5922

(6)
0.7229

(6)
0.6627

(6)

0.7623 0.7605 0.8680 0.8272
pima 0.7014

(8)
0.7330

(6)
0.7352

(8)
0.7589

(4)

0.9599 0.9599 0.9876 0.9826
segment 0.9607

(19)
0.9607

(15)
0.9757

(6)
0.9729

(10)

0.8392 0.8531 1.0000 1.0000
sonar 0.8462

(60)
0.8462

(10)
0.7458

(1)
0.7966

(10)

0.7141 0.7059 0.9397 0.8362
vehicle 0.7179

(18)
0.7265

(15)
0.8308

(6)
0.7594

(10)

0.9590 0.9836 1.0000 1.0000
wine 0.9464

(13)
0.9464

(6)
0.9811

(1)
1.0000

(2)

0.8396 0.8541 0.9429 0.8649 
waveform 0.8531

(21)
0.8720

(2)
0.8375

(10)
0.8578

(15)

0.9611 0.9616 0.9746 0.9650
page blocks 0.9685

(10)
0.9685

(8)
0.9685

(4)
0.9710

(8)

0.9092 0.9116 0.9555 0.9107
sat 0.8965

(36)
0.8944

(15)
0.8944

(10)
0.8991

(25)

0.9676 0.9673 1.0000 0.9783
musk 0.9641

(166)
0.9656

(90)
0.9946

(4)
0.9759

(15)

Table 2. The best success rates obtained by PCA, GLP and NDA on the training set (top) and 
the test set (bottom). The results on the original feature space are also shown. The values in 
brackets represent the number of features. Values in boldface represent the methods that 
obtain the highest reduction, maintaining or improving the original correct classification 
rate.
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3.3 Results 

Tables 2 and 3 present the best runs obtained for the three methods. The success rate is 
presented instead of the success confidence rate (the criterion used to optimise) because we 
are interested in the final classifier performance. Analysing the results and considering their 
95% confidence intervals (see Table 3) it can be observe that a significant classifier 
improvement was only obtained by NDA in three data sets (cookies, vehicle and musk), and 
by GLP in one data set (cookies). In all the other cases, only feature reduction was achieved, 
i.e., the classifier obtained similar results to the original space but with fewer features. 
By analysing all the runs (not only the best ones), and taking into account the confidence 
intervals, it can be observed that the three methods obtained a similar reduction with the 
exception of PCA, which obtained a worse reduction in five data sets (cookies, ionosphere,
segment, sonar and vehicle). For instance, Figure 1 shows the results for the vehicle, cookies and 
segment data sets, for different numbers of features. It also shows that a similar reduction 
was obtained by NDA and GLP in these cases, while PCA yielded significantly worse 
results. 
It is interesting to note that, although only one linear projection was enough to separate the 
classes of cookies data set, PCA and GLP had problems. PCA was not able to do it because 
the maximal scatter direction was not the optimal in this case. GLP failed because random 
optimisation methods have problems finding very isolated solutions. Nevertheless GLP was 
able to find a good solution with two or more linear projections while PCA continued to fail. 
In the data projection context, looking at the success rate obtained by the classifiers when 
projecting data sets into a 2-dimensional space (see Table 4), it can be observed that NDA 
and GLP outperformed PCA in most of the data sets. NDA obtained better results than GLP 
for high dimensional data sets (i.e. the digits data set, see Figure 2). Visual analysis of 
obtained projections confirmed these results showing that GLP and NDA produced less 
overlapping views than PCA (see Figures 2,  3 and 4). 
Finally, with respect to the time complexity of methods, although the estimation of the 
success confidence rate, aĈ , was optimised by using kd-trees, and although the GA was 
parallelised to speed up the algorithm, the off line cost of GLP was higher than the cost for 
the other two methods. The method with the lowest cost is LDA because the 
transformations are obtained by means of a closed-form method and there is no need for 
several runs as in NDA or GLP. 
Regarding the on line costs, GLP and LDA generate linear transformations and have an 
application cost that is lower than the application of the non-linear transformations 
generated by the neural network on NDA. 

4. Conclusions 

From the results obtained, we can conclude that although NDA obtains good results with 
non-linear projections in all data sets, similar results can be obtained using GLP in most of 
them. This indicates to us that, in practice, linear projections can obtain results just as good 
as non-linear projections in most cases. Even though PCA employs linear projections as 
well, it performs worse in some data sets probably because it is an unsupervised method. 
Classical linear, supervised feature extraction methods like LDA have important limitations: 
first, the number of new features is limited by the number of classes; and second, numerical 
problems arise when working with high dimensional or small data sets, restricting its use. 
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The proposed GLP method does not have these limitations. The main drawback of the GLP 
method is it computational cost; however, this is an off line process. Once the  

Corpora Original PCA NDA GLP 
0.6925 0.6955 0.9776 0.7895 0.7278 0.7598 0.7307 0.7626 0.9882 0.9951 0.8198 0.8478 
0.6760 0.6551 0.6620 0.6935 german 0.7285 0.7794 0.7086 0.7607 0.7183 0.7670 0.7461 0.7949 
0.6529 0.6529 0.6743 0.7474 0.7308 0.8008 0.7244 0.8008 0.7485 0.8187 0.8160 0.8771 
0.4482 0.5594 0.6091 0.6603 glass 0.5690 0.7006 0.6897 0.7976 0.7255 0.8370 0.7843 0.8749 
0.4728 0.4728 0.9974 0.9974 0.4993 0.5258 0.4993 0.5258 1.0000 1.0000 1.0000 1.0000 
0.4328 0.4328 0.9939 0.9939 cookies 0.4728 0.5142 0.4729 0.5142 1.0000 1.0000 1.0000 1.0000 
0.8391 0.8672 0.9851 0.9646 0.8833 0.9227 0.9083 0.9429 1.0000 1.0000 0.9876 0.9975 
0.7319 0.7535 0.8435 0.8089 ionosphere 0.8198 0.8874 0.8378 0.9028 0.9174 0.9601 0.8899 0.9395 
0.9329 0.9329 0.9481 0.9655 0.9725 0.9977 0.9725 0.9977 0.9818 0.9998 0.9909 1.0000 
0.8173 0.8173 0.8823 0.8485 iris 0.9268 0.9860 0.9268 0.9860 0.9750 0.9994 0.9500 0.9946 
0.9424 0.9512 0.9906 0.9486 0.9522 0.9611 0.9603 0.9684 0.9948 0.9974 0.9581 0.9663 
0.9337 0.9400 0.8918 0.9425 digits 0.9504 0.9633 0.9559 0.9681 0.9122 0.9299 0.9578 0.9700 
0.6305 0.6305 0.7537 0.7003 0.6901 0.7506 0.6901 0.7506 0.8092 0.8567 0.7557 0.8119 
0.4910 0.4910 0.6316 0.5703 bupa 0.5922 0.6880 0.5922 0.6880 0.7229 0.8112 0.6627 0.7594 
0.7252 0.7233 0.8382 0.7941 0.7623 0.7988 0.7605 0.7971 0.8680 0.8970 0.8272 0.8596 
0.6408 0.6728 0.6728 0.7004 pima 0.7014 0.7625 0.7330 0.7906 0.7352 0.7906 0.7589 0.8145 
0.9490 0.9490 0.9810 0.9751 0.9599 0.9688 0.9599 0.9688 0.9876 0.9924 0.9826 0.9885 
0.9438 0.9438 0.9610 0.9575 segment 0.9607 0.9742 0.9607 0.9742 0.9757 0.9856 0.9729 0.9834 
0.7716 0.7872 0.9749 0.9749 0.8392 0.8967 0.8531 0.9081 1.0000 1.0000 1.0000 1.0000 
0.7233 0.7233 0.6150 0.6682 sonar 0.8462 0.9198 0.8462 0.9198 0.7458 0.8447 0.7966 0.8834 
0.6763 0.6676 0.9168 0.8038 0.7141 0.7506 0.7059 0.7425 0.9397 0.9570 0.8362 0.8651 
0.6597 0.6680 0.7823 0.7055 vehicle 0.7179 0.7738 0.7265 0.7812 0.8308 0.8777 0.7594 0.8139 
0.9084 0.9430 0.9707 0.9707 0.9590 0.9868 0.9836 0.9980 1.0000 1.0000 1.0000 1.0000 
0.8434 0.8434 0.8993 0.9328 wine 0.9464 0.9882 0.9464 0.9882 0.9811 0.9995 1.0000 1.0000 
0.8271 0.8419 0.9346 0.8531 0.8396 0.8517 0.8541 0.8655 0.9429 0.9503 0.8649 0.8760 
0.8344 0.8540 0.8177 0.8393 waveform 0.8531 0.8709 0.8720 0.8885 0.8375 0.8557 0.8578 0.8753 
0.9545 0.9551 0.9692 0.9587 0.9611 0.9670 0.9616 0.9675 0.9746 0.9794 0.9650 0.9706 
0.9593 0.9593 0.9593 0.9621 page blocks 0.9685 0.9768 0.9685 0.9768 0.9685 0.9768 0.9710 0.9789 
0.9004 0.9030 0.9492 0.9020 0.9092 0.9174 0.9116 0.9198 0.9555 0.9614 0.9107 0.9189 
0.8825 0.8803 0.8803 0.8852 sat 0.8965 0.9101 0.8944 0.9082 0.8944 0.9082 0.8991 0.9125 
0.9620 0.9618 0.9992 0.9737 0.9676 0.9724 0.9673 0.9722 1.0000 1.0000 0.9783 0.9823 
0.9550 0.9566 0.9901 0.9680 musk 0.9641 0.9719 0.9656 0.9732 0.9946 0.9972 0.9759 0.9821 

Table 3. The bests success rates obtained by PCA, GLP and NDA on the training set (top) 
and the test set (bottom). The results on the original feature space are also shown. Small 
values represent the 95% confidence intervals for the correct classification rate. Values in 
boldface represent values that are significantly different from the original.   
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transformations are computed, the cost of applying them to new data is lower than applying 
the neural network trained by the NDA method. Moreover, the process of training an NDA 
neural network is not straightforward in many cases, having convergence problems. 
From the point of view of data projection, it can be concluded that NDA projections 
outperform our GLP method when the intrinsic dimensionality is high. In these cases, the 
NDA projection is able to obtain a good view of the class structure even in a 2-dimensional 
projection. Nevertheless, we consider that NDA has one important drawback. Because non-
linear transformations are used, an important distortion of the original space occurs, 
especially when projecting into a 2-dimensional space in an attempt to preserve the class 
structure (see Figure 3). In this situation, a synthetic view of the configuration of real 
clusters is obtained. The GLP method uses linear transformations, thereby producing less 
distorted and more meaningful views of the original space (distortion can appear because 
the new axes are not necessarily orthogonal). The PCA method is linear and unsupervised; 
therefore, the projections computed do not always show a good view of the class structure if 
the discriminant axes are not the ones with the highest variance. 

Corpora Original PCA NDA GLP 

german 0.7278 0.7178 0.9075 0.7885

glass 0.7308 0.6731 0.6454 0.6626

cookies 0.4993 0.3986 1.0000 0.9959 

ionosphere 0.8833 0.7125 0.9901 0.9769

iris 0.9725 0.9266 0.9709 0.9745

digits 0.9522 0.4364 0.8508 0.6336

bupa 0.6901 0.5331 0.7756 0.7206

pima 0.7623 0.7130 0.8586 0.7825

segment 0.9599 0.6402 0.9412 0.9135

sonar 0.8392 0.5664 0.9879 0.9289

vehicle 0.7141 0.4935 0.7921 0.7438

wine 0.9590 0.9508 0.9968 0.9936 

waveform 0.8396 0.8541 0.8909 0.8514

page blocks 0.9611 0.9369 0.9641 0.9530

sat 0.9092 0.8322 0.8756 0.8380

musk 0.9676 0.8913 0.9993 0.9296

Table 4. Mean values for the correct classification rate obtained over the training sets when 
looking for two new features (exploratory analysis). The bests results for each data set are in 
boldface.  
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Fig. 1. Correct classification rate results for vehicle (top), cookies (middle) and segment
(bottom) data set. The 95% confidence intervals are shown.  

Fig. 2. Projections obtained for the digits data set by PCA (top), GLP (middle) and NDA (bottom).  
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Fig. 3. Projections obtained for the cookies data set by PCA (top), GLP (middle) and NDA 
(bottom).
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Fig. 4. Projections obtained for the segment data set by PCA (top), GLP (middle) and NDA 
(bottom).
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1. Introduction  

There are many research efforts in object recognition. Most existing methods for object 
recognition are based on full objects. However, many images contain multiple objects with 
occluded shapes and regions. Due to the occlusion of objects, image retrieval can provide 
incomplete, uncertain, and inaccurate results. To resolve this problem, we propose a new 
method to reconstruct objects using symmetry properties since most objects in a given 
image database are represented by symmetrical figures. 
Even though there have been several efforts in object recognition with occlusion, current 
methods have been highly sensitive to object pose, rotation, scaling, and visible portion of 
occluded objects. In addition, many appearance-based and model-based object recognition 
methods assumed that they have known occluded regions of objects or images through 
extensive training processes with statistical approach. However, our new approach is not 
limited to recognizing occluded objects by pose and scale changes, and does not need 
extensive training processes. 
Unlike existing methods, the proposed method finds shapes and regions to reconstruct 
occluded shapes and regions within objects. We assume that we only consider the elliptical 
objects in recognition. The proposed approach can handle object rotation and scaling for 
dealing with occlusion, and does not require extensive training processes. The main 
advantage of our proposed approach is that it becomes simple to reconstruct objects from 
occlusions using symmetry. We present a robust method, which is based on the contours of 
objects, for recognizing partially occluded objects based on symmetry properties. The 
contour-based approach finds a symmetry axis using the maximum diameter from the 
occluded object.  
In experiments, we demonstrate how a proposed method reconstructs and recognizes 
occluded shapes and regions using symmetry. Experiments use rotated and scaled objects 
for dealing with occlusion. We use mirror symmetry to find possible occluded regions in 
objects. Examples of partially occluded objects are shown in Figure 1.1.  
We also evaluate the recognition rate of the reconstructed objects using symmetry and the 
visible portion of the occluded objects for recognition. The method produces average 
recognition rates for cups and plates above 88% with 30% occlusion. In this case, part of the 
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objects needs to be visible for correct recognition of all objects. Specifically, 67% should be 
visible for the contour-based approach. Experimental results show that the reconstructed 
objects are properly recognized by our method. 

Fig. 1.1 Examples of Outlined Objects including the Occlusion. Objects include cups, bowls, 
and plates 
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2. Related Work 

Current object recognition methods represent models either as a collection of geometric 
measurements or as a collection of images of an object. Some researchers proposed learning 
control strategies and methods of probabilistic models for object recognition based on local 
appearance.
There have been several research efforts in object recognition. (Krumm, 1997) proposed a 
new algorithm for detecting objects in images which uses models based on training images 
of the object, with each model representing one pose. (Williams, 1997) proposed a method 
for the reconstruction of solid-shape from image contour using the Huffman labeling 
scheme. Also, (Williams & Hanson, 1996) described a method for visual reconstruction of 
visible and occluded forward facing surfaces from image contour. 
For object recognition, (Rajpal et al., 1999) introduced a method for partial object recognition 
using neural network based indexing. They used invariants of local contour segmentation 
for indexing. (Chang & Krumm, 1999) used the color cooccurrence histogram based on pairs 
of pixels. To recognize objects in images, they abstracted away unimportant details by using 
subtemplates, normalized correlations, and edge features. They also recognized occluded 
objects using probability approximation for parameters. (Schiele & Pentland, 1999) proposed 
a method to perform partial object recognition using statistical methods, which are based on 
multidimensional receptive field histograms. 
A number of more recent works have used edges for object recognition. (Mikolajczyk et al., 
2003) generalized Lowe’s SIFT descriptors to edge images, where the position and 
orientation of edges are used to create local shape descriptors that are orientation and scale 
invariant (Lowe, 1999). (Carmichael & Hebert, 2004) proposed a method to use a cascade of 
classifiers of increasing aperture size, trained to recognize local edge configurations, to 
discriminate between object edges and clutter edges; this method, however, is not invariant 
to changes in image rotation or scale. (David & DeMenthon, 2005) proposed a method to use 
model and image line features to locate complex objects in high clutter environments.  
In appearance-based object recognition, (Edwards & Murase, 1997) addressed the occlusion 
problem inherent in appearance-based methods using a mask to block out part of the basic 
eigenimages and the input image. (Leonardis & Bischof, 1996) handled occlusion, scaling, 
and translation by randomly selecting image points from the scene and their corresponding 
points in the basis eigenvectors. (Rao, 1997) applied the adaptive learning of eigenspace 
basis vectors in appearance-based methods. The dynamic appearance-based approach is 
used to predict spatial and temporal changes in the appearance of a sequence of images. 
(Ohba & Ikeuchi, 1997) were able to handle translation and occlusion of an object using 
eigenwindows. The eigenwindows encode information about an object's appearance for 
only a small section of its view. 
In model-based object recognition, (Jones & Bhanu, 1999) described a model-based object 
recognition method using the combination of a SAR approach, model for azimuthal 
variance, articulation invariants, and the resolution of the sensor data. (Boshra & Bhanu, 
2000) also described a model-based object recognition method using the probability of 
correct recognition. 
Current methods for dealing with occlusion have been based on template matching, 
statistical approaches using localized invariants, and recognition of occluded regions based 
on local features. In addition, there are many efforts in ellipse construction and detection 
(Ho & Chan, 1995; Wu & Wang, 1993). In this paper, we propose unique methodologies in 
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object recognition for dealing with occlusion based on symmetry properties through the 
ellipse reconstruction. 
Even though there have been several efforts in object recognition with occlusion, current 
methods have been highly sensitive to object pose and scaling. In addition, many 
appearance-based and model-based object recognition methods assumed that they have 
known occluded regions of objects or images through extensive training processes. 
However, our proposed method is not limited to recognizing occluded objects by pose and 
scale changes, and do not require extensive training processes. 

3. The Proposed Method 

We discuss the object reconstruction and the parameter estimation method to find the best 
matching class of input objects using the classification method. (Cho & Choi, 2004) extracted 
shape parameters from reconstructed objects using RLC lines, such as roundness, aspect 
ratio, form factor, surface regularity (Adam et al., 2000). 
In the following section, we discuss an approach for partial object recognition, which is 
focused on the contour of objects. This approach tries to find occluded shapes within 
partially occluded objects. The basic assumption is that most objects are represented by 
symmetrical figures. When a symmetric object is partially occluded, the symmetry measure 
to evaluate the symmetric shape is used. After estimating the most similar parameters of 
occluded shape and region of objects, objects that have the estimated parameters of 
occluded objects are retrieved. 
A basic idea of reconstruction and estimation of occluded objects is to use symmetry 
properties within objects and to use the contour of objects. Fortunately, most products in 
electronic catalogs have symmetry in their shapes and they are represented by symmetrical 
figures. Symmetrical descriptions of shape or detection of symmetrical features of objects 
can be useful for shape matching, model-based object matching, and object recognition 
(Bischof & Leondardis, 1998; Blum & Nagel, 1978). 
In the given database, we have elliptical and roughly-rounded objects such as plates, cups, 
pans, and pots, depending on their poses and shapes. First, we consider elliptical objects in 
which the occlusion changes values of measurements and parameters related to diameters. 
We assume that we can get diameters from elliptical objects, which are partially occluded. 

Fig. 3.1 Three-Spoke from the Triangle. 
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However, the elliptical objects are limited to the shape of objects. Therefore, it may not be 
applied to other types of shape such as irregular shapes. In this case, since we cannot easily 
detect the symmetry axes, we introduce the three-spoke type symmetry method as shown in 
Figure 3.1. We apply this approach to roughly-rounded objects such as cups. 
For roughly-rounded objects, we use the three-spoke type method, which is derived from 
the triangle. The triangle is a basic model to represent figures such as circle, rectangle, and 
polygon. We use extended lines of the triangle to make axes as shown in Figure 3.1. The 
three-spoke type symmetry axes, which are equally assigned by 120 degrees, provide the 
possibility to detect proper symmetry axes on roughly-rounded objects. Therefore, this 
method can detect symmetry axes in roughly-rounded objects. 
In order to perform the following procedures, we assume that objects are represented by 
symmetrical figures. 
• We have an occluded elliptical object in Figure 3.2 and roughly-rounded object in 

Figure 3.6, we can get cutting points of the occlusion )',( yx  and ')',( yx , that are given 
by overlapping or cutting. 

Fig. 3.2 The Occlusion Area Estimation using Symmetry: Get cutting points (x,y)' and (x,y)''
and get a distance l'.

Fig. 3.3 The Occlusion Area Estimation using Symmetry: Get the maximum diameter and 
the symmetry axis. 
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Fig. 3.4 The Occlusion Area Estimation using Symmetry: Get the estimated region a' using a 
line l' and the symmetry axis. 

Fig. 3.5 The Occlusion Area Estimation using Symmetry: Add region a' to occluded shape 
and region and re-captured the estimated shape of an object. 

• Compute a distance between two cutting points from )',( yx and ')',( yx , which is called 
a line l' as in Figure 3.2 and 3.6. 

• Based on a line l', make a connection between two points, fill the concave region and re-
captured the shape. It is important to compute a centroid in an object. 

• Get the maximum diameter from re-captured shape using extremal points as shown in 
Figure 3.4 and 3.7. Two extremal points (r, l) and (r, l)' derives from re-captured shape 
as in Figure 3.7. The distance between two extreme boundary points is represented by 
the maximum diameter. 

• In elliptical objects, one of the maximum and minimum diameters can be a symmetry 
axis. In roughly-rounded objects, we use the three-spoke type symmetry, one spoke can 
be a symmetry axis to find occluded region within an object. 

• Centroid Detection: In case of elliptical objects, we find a centroid based on the 
maximum diameter and a line perpendicular to the maximum diameter, which is 
located in the center of the length of the maximum diameter. We select symmetry axes 
based on one of these lines as in Figure 3.3. In roughly-rounded objects, we get a 
centroid, based on whole region of an object. Equation 2 is adapted from (Russ, 1998). If 
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the centroid is calculated by equation 1 using the boundary pixels only, the results may 
not be correct. The calculated points will be biased toward whichever part of the 
boundary is most complex and contains the most pixels. The correct centroid location 
uses the pairs of coordinates ix , iy  for each point in the shape boundary. The centroid 
of an irregular shape is calculated correctly using all of the pixels in an object. 
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• In roughly-rounded objects, a centroid is put at the same position at the center of the 
three-spoke type symmetry axes. 

Fig. 3.6 The Occlusion of a Cup: Get a centroid after re-captured a shape. 

Fig. 3.7 Get extremal points (r,l), (r,l)' and (r,l)'',(r,l)''' and the maximum diameter of an 
object.
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Fig. 3.8 Use the Three-Spoke Type Symmetry: Match a center of the spoke to a centroid and 
parallel one of axes to the maximum diameter 

Fig. 3.9 Extend axes and make symmetry axes. 

Fig. 3.10 Select a symmetry axis based on two regions, which are A and B.   

Fig. 3.11 Find a region a' of occluded shape using a symmetry axis and add to an occluded 
shape.
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• Axis Detection: The midpoint of the major axis is called the center of the ellipse. The 
minor axis is the line segment perpendicular to the major axis which also goes through 
the center and touches the ellipse at two points. In elliptical objects, we detect a 
symmetry axis based on the maximum diameter or the minimum diameter. To find a 
symmetry axis in roughly-rounded objects, one of axes of the three-spoke type 
symmetry axes is in parallel with the maximum diameter of an object as shown in 
Figure 3.8. 

Based on occluded shape and region, we select a symmetry axis to estimate this region 
within an object. Figures 3.9 and 3.10 show how to select a symmetry axis. When we select 
an axis in roughly-rounded objects, we consider conditions as follows: 
• Select axes, which don't intersect the occluded region. 
• Figures 3.9 and 3.10 show how to select a symmetry axis. Select axes, which have a 

region with the maximum diameter l'.
• Area and perimeter are invariants as in equation 3, compare the proportion of region A 

and B. 
BA

Area
Perimeter

Area
Perimeter ≅  (3) 

• Using mirror symmetry, we can get points across an axis. We find points on the contour 
across an axis which have the same length l' and the same angle corresponding to the 
axis that is perpendicular to a symmetry axis, but the distance between axis and points 
may or may not be the same. 

• Capture a region a', move the captured region to the occluded shape using the mirror 
symmetry, and add to these regions as shown in Figure 3.4, 3.5, and 3.11. 

• Re-compute shape measurements such as area, diameters, and perimeter using RLC 
lines from re-captured shape of an object. Then, re-compute shape parameters based on 
measurements.

• Apply to a classifier as proposed in (Cho & Choi, 2004). 
From the above discussions, we described how to reconstruct and estimate the partially 
occluded shape and region of an object and how to find the best matching class of partially 
occluded objects after the estimation. 

4. Experimental Results 

In the sections, we evaluate and describe the results of partial object recognition by the 
proposed method. We have selected 190 partially occluded objects of images from electronic 
catalogs on the Internet as well as manipulated images. We assume that occluded objects 
have more than 50% visibility of objects, and images of catalogs contain partially occluded 
objects. The objects are categorized by semantic meanings such as cup and plate. In 
addition, a proposed approach and experiments are limited to cups and plates since we use 
roughly-rounded or elliptical objects. More precisely, the database contains 32 objects from 
different viewpoints and images of 97 objects comprising image plane rotations and scale 
changes. 
In sample images, we have extracted image features of partially occluded objects such as 
shape and texture. We experimented with shape reconstruction based on the contour of 
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objects using symmetry properties. We assumed that inputs are not correctly classified and 
have occlusion. 
We experimented with samples such as plates and cups to reconstruct the occluded shape of 
objects as shown in Figure 4.1 and 4.2. In Figure 4.2, it is correctly classified after the 
reconstruction with an occlusion about 30%. On the other hand, Figure 4.1 is not correctly 
classified after the reconstruction since the width of plate is too narrow. This experiment 
shows that our method heavily relies on shape of objects. 

Fig. 4.1 Example of the occlusion with a plate. 

Fig. 4.2 Example of the manipulated occlusion with a Cup. 

We performed an experiment for the relationships between visible portion of objects and 
recognition rates. In order to evaluate the visibility of objects, we used manipulated images 
of cups and plates. Figure 4.3 shows the pattern of object recognition in the presence of 
partial occlusion of objects and the results obtained by the symmetric recognition. A visible 
portion of approximately 67% is sufficient for the recognition of objects based on the 
contour. 
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Fig. 4.3 Object recognition in the presence of the occlusion of objects based on the contour. 

There are many efforts in object recognition for dealing with occlusion. The visible portion 
of objects required to recognize occluded objects are shown in Table 4.1. Table 4.1 shows a 
simple comparison between a proposed method and other existing methods. The 
probabilistic method based on local measurements requires small portions of objects to 
recognize the whole objects, but it required extensive training processes to recognize 
occluded objects. A proposed method show good visibility of partial object recognition and 
do not need extensive training processes. 

Methods Visibility Training 
processes 

Appearance matching techniques  using 
adaptive masks 90% not

required 

Probabilistic technique using Chi-square 72% required 

Probabilistic technique using local 
measurements 34% required 

Contour-based approach using symmetry 67% not
required 

Table 4.1 The visibility of object recognition in the presence of partial occlusion. 

In order to measure the influence of occlusion and compare its impact on the recognition 
performance of the different methods, we performed an experiment as follows. Figure 4.4 
summarizes the recognition results for different visible object portions. For each test object, 
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we varied the visible object portion from 20% to 100% and recorded the recognition results 
using Chi-square divergence and a proposed method. 

Fig. 4.4 Experimental results with occlusion. 

The results show that a proposed method clearly obtains better results than Chi-square 
divergence. Using only 60% of the object area, almost 80% of the objects are still recognized. 
This confirms that a proposed method is capable of reliable recognition in the presence of 
occlusion.  

Methods Occlusion Scale changes Object Pose Rotation 

(Bischof & Leonardis, 
1998) Yes Yes No No 

(Edwards & Murase, 
1997) Yes Yes No Yes(limited) 

(Ohba & Ikeuchi,1997) Yes No Yes No 

(Rao, 1997)  Yes No Yes No 

(Jacobs & Basri, 1997)  Yes No Yes No 

(Krumm, 1997)  Yes No No No 

Contour-based 
Method Yes Yes Yes(limited) Yes 

Table 4.2 Summary of Object Recognition Methods for dealing with Occlusion. 
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Table 4.2 summarizes the various object recognition methods. The table indicates whether 
the methods can handle occlusion, rotation, pose, and changes in the size of objects in the 
database. Unlike the other methods, a proposed method can handle scale change, object 
pose, and rotated objects with occlusion, even though a proposed method has minor 
limitations of object poses. 

5. Conclusion 

In this paper, we have discussed how to estimate parameters and to reconstruct the 
occluded shape of partial elliptical objects in image databases. In order to reconstruct 
occluded shapes, we used mirror symmetry, which provides powerful method for the 
partial object recognition. Unlike the existing methods, a proposed method tried to 
reconstruct occluded shapes and regions within objects, since most objects in a domain have 
symmetrical figures. However, we have limitations in the shape of objects and the occluded 
region of objects. For example, if a pan has an occlusion in handle, it cannot correctly 
reconstruct and be recognized.  
Another minor limitation of a proposed method is that it is sensitive to the pose of an object. 
For example, if we cannot see an ellipse due to the object's pose, we cannot recognize the 
object. After estimation, we have applied inputs, which include estimated parameters, to the 
existing classification trees, to get to the best matching class. 
All experiments are performed based on the classifier in earlier work. In experiments, the 
results show that the recognition of the occluded object is properly reconstructed, estimated, 
and classified, even though we have limited to the size of samples. In addition, we have 
experienced the power of the symmetry through experiments.  
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1. Introduction    

Representation of digital planar curves is an important step prior to many image analysis 
tasks, such as object recognition, image matching, target tracking, etc. Polygonal 
approximation is an important technique to digital curve representation since the main 
information of curves is preserved at the corner points, it is desired to approximate a digital 
curve by an appropriate polygon to reduce the memory storage and the processing time for 
subsequent analyses. The design of a polygonal approximation algorithm not only impacts 
on the compression ratio of the data volume but also affects the accuracy of the subsequent 
image analysis tasks. There are several possible criteria with which the polygonal 
approximation can be performed, one of the most broadly used can be described as “given a 
digital curve and an error tolerance, the algorithm approximates the curve with a polygon 
by taking a subset of the points on the curve as the vertices such that the number of vertices 
is minimized and the approximation error between the curve and the corresponding 
polygon is no more than the error tolerance.” (Yin, 2006) 
An exact method to the polygonal approximation problem is impractical due to the 
intensive computations involved. An attempt using the dynamic programming technique 
had been made (Dunham, 1986), however, it required a worst-case complexity of O(N4)
where N is the number of data points. Early solutions to reduce the amount of computations 
rely on local search heuristics, namely the sequential scan-along approaches (Wall & 
Danielsson, 1984; Ray & Ray, 1993), split-and-merge approaches (Ansari & Delp, 1991; Ray 
& Ray, 1995), and dominant point detection approaches (Teh & Chin, 1989; Zhu & Chirlian, 
1995). However, the quality of the approximation result depends upon the initial condition 
where the heuristics take place and the metric used to measure the curvature.  
Metaheuristics are alternatives to solve complex combinatorial optimization problems. Fred 
Glover first coined the term metaheuristic as a strategy that guides another heuristic to search 
beyond the local optimality such that the search will not get trapped in local optima. 
Metaheuristics combine two components, an exploration strategy and an exploitation 
heuristic, in a framework. The exploration strategy searches for new regions, and once it 
finds a good region the exploitation heuristic further intensifies the search for this area. In 
this context, metaheuristics encompass several well-known approaches such as genetic 
algorithm (GA), simulated annealing (SA), tabu search (TS), scatter search (SS), ant colony 
optimisation (ACO), particle swarm optimisation (PSO), just to name a few. Most of the 
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central metaheuristics have been applied to the polygonal approximation problems and 
attained promising results. Instead of describing all the methods, this chapter will focus on 
the more recently proposed metaheuristics, ACO and PSO, and give their comparative 
evaluations.
The remainder of this chapter is organized as follows. Section 2 presents the formulation of 
the polygonal approximation problem. Section 3 renders the details of the ACO- and the 
PSO-based methods. In Section 4, we present the experimental results and discussions. 
Finally, a conclusion is given in Section 5. 

2. Problem Formulation 

Given a digital curve represented by a set of N points, S = {x0, x1, ..., xN-1} where x(i+1)  mod N is 
considered as the succeeding point of xi. We define arc xixj as the collection of those points 
between xi and xj, and chord ji xx  as the line segment connecting xi and xj. If we 

approximate xixj by ji xx , the incurred approximation error, denoted by e(xixj, ji xx ), can be 

measured by any distance norm; for here, the L2 norm, i.e., the sum of squared 
perpendicular distance from every data point on xixj to ji xx , is adopted. Thus a polygon 

with the vertex set T = {
0px ,

1px , …, 
1−Mpx }, where T ⊂ S and 3 ≤ M ≤ N, can approximate 

the given curve with a total error E = ( )−

=
++

1

0
mod)1(mod)1(

,
M

i
pppp MiiMii

xxxxe , and our aim is to 

construct a polygon with the minimal vertex set and the incurred approximation error is less 
than the pre-specified tolerance. Formally, the polygonal approximation problem can be 
formulated as follows. 

T
ST ⊂

minarg  subject to 3 ≤ T ≤ N and E ≤ ε, (1) 

where T  denotes the cardinality of T and ε is the pre-specified error tolerance. 

3. Polygonal Approximation Using Metaheuristics 

Metaheuristics have shown many successful applications in diverse domains and the 
effectiveness and the malleability of metaheuristics are proven to be significantly better than 
most of the traditional local search heuristics. Metaheuristics are attractive to researchers 
because of their common features: natural metaphor, adaptivity, parallelism, easy 
implementation, and high quality result. In the following we illustrate the polygonal 
approximation application using two state-of-the-art metaheuristics: ant colony 
optimization (ACO) and particle swarm optimization (PSO). 

3.1 ACO-based method 

The basic framework of ant colony optimization (ACO) was first introduced in Dorigo’s 
Ph.D. dissertation (Dorigo, 1992). Since then many ACO applications have been investigated 
such as the travelling salesman problem (Dorigo & Gambardella, 1997), quadratic 
assignment problem (Maniezzo et al., 1994), and combined heat and power economic 
dispatch problem (Song et al., 1999). The ACO is inspired by the research on the real ant 
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behavior. Ethologists observed that ants are able to construct the shortest feasible path from 
their colony to the feeding source by the use of pheromone trails. An ant leaves some 
quantities of pheromone on the ground and marks the path by a trail of this substance. The 
next ant then senses the pheromone laid on different paths and chooses one with a 
probability proportional to the amount of pheromone on it. The ant traverses the chosen 
path and leaves its own pheromone. This is an autocatalytic (positive feedback) process 
which favors the path along which more ants previously traversed. To apply the ACO to 
circumvent the problem, we need to define the path space and the pheromone field that 
play central roles in the algorithm (Yin, 2003).  

3.1.1 Graph representation  

Ideally, we can construct a graph G = <S, E*>, where S is the set of data points on the given 
curve and E* is the ideal edge set that has the desired property that any closed circuit 
through E* which originates and ends at the same node represents a feasible solution to the 
problem, i.e., the polygon consisting of the edges and nodes along the closed circuit should 
approximate the curve with E ≤ ε. However, it is impossible to generate E* in practice. An 
alternative is to generate a pseudo-ideal edge set Ê , such that, E* Ê⊆ . For the constructed 
circuits which violate E ≤ ε, we can decrease the intensity of pheromone trails on the circuits 
to make them less attractive. Ê  is constructed as follows. First, an empty edge set is created, 
i.e., ∅=Ê . For every node Sxi ∈ , we examine each of the remaining nodes, Sx j ∈ , in 

clockwise order. The directed edge ji xx  is added to Ê  if the approximation error between 

the arc ji xx  and the line segment ji xx  is no more than ε. The reason for using a directed 

edge is to avoid the ants walking backward. Now, the problem of polygonal approximation 
is equivalent to finding the shortest closed circuit on the directed graph G = <S, Ê > such 
that E ≤ ε.
For the convenience of presentation, we define some notations as follows. Let the closed 
circuit completed by the kth ant be denoted ktour , the number of nodes visited in ktour  be 

ktour , and the approximation error between the original curve S and the approximating 

polygon corresponding to ktour  be ),( ktourSE .

3.1.2 Starting node selection  

Each ant chooses a starting node in the graph and sequentially constructs a closed path to 
finish its tour during each iteration. We establish a selection table for the starting node 
which is a linear array of N entries denoted by Ti, i = 1, 2, …, N. Initially, we let each Ti = 1. 
The probability with which the ith node is chosen as a starting node, denoted Selecti, is 

estimated as the entry value Ti divided by the sum of all entry values, 
=

=
N

j
jii TTSelect

1

.

The ties with respect to Selecti are broken randomly. Apparently, at the beginning of the first 
cycle, every node has equal probability of being chosen as a starting node since 
Selecti N1= . We then update the entry value of the selection table at the end of each cycle. 
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Let the set of ants which start with the ith node at the current cycle be Ant_Starti, and the 
size of Ant_Starti be iStartAnt _ . We update entry Ti based on a trade-off between the 

average quality of current solutions constructed by those ants in Ant_Starti and the value of 
Selecti derived from older cycles. Thus, we let 

+−
← ∈
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i
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T

Selectr
tourStartAnt

r
T

i
 (2) 

where )1,0(∈r  is the parameter which controls the relative contribution of each 
component.  

3.1.3 Node transition rule  

The node transition rule is a probabilistic one determined by the pheromone intensity ijτ
and the visibility value ijη  of the corresponding edge. In the proposed method, ijτ  is equally 

initialized to N1  (actually, any small constant positive value will suffice), and is gradually 
updated at the end of each cycle according to the average quality of the solutions that 
contain this edge. On the other hand, the value of ijη  is determined by a greedy heuristic 

which encourages the ants to walk to the farthest accessible node in order to construct the 
longest possible line segment in a hope that an approximating polygon with fewer vertices 
is obtained eventually. This can be accomplished by setting 

jiij xx=η , where 
ji xx  is the 

number of points on ji xx . The value of ijη  is fixed during all the cycles since it considers 

local information only. 

We now define the transition probability from node i to node j through directed edge ji xx
as

∀

=

i
hi
x
xx

ihih

ijij
ijp

from

)()(

)()(
βα

βα

ητ
ητ . (3) 

Also, the ties with respect to ijp  are broken randomly.

3.1.4 Pheromone Updating Rule  

The intensity of pheromone trails of an edge is updated at the end of each cycle by the 
average quality of the solutions that traverse along this edge. In particular, the pheromone 
intensity at directed edge 

ji xx  is updated by 

if the ith node was chosen as a 
starting node at current cycle 

otherwise,
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where )1,0(∈ρ  is the persistence rate of previous pheromone trails, and k
ijτΔ  is the 

quantity of new trails left by the kth ant and it is computed by 
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Therefore, more quantities of pheromone trails will be laid at the edges along which most 
ants have constructed shorter feasible tours. On the other hand, in the worst case, the edges 
will receive no positive rewards because either no ants walked through them or most 
passing ants constructed infeasible tours. As such, the proposed rule can guide the ants to 
explore better tours corresponding to high quality solutions. 

3.2 PSO-based method 

Particle swarm optimization (PSO) is a new metaheuristic developed in 1995 (Kennedy & 
Eberhart, 1995). It has exhibited effectiveness and malleability in many applications, such as 
evolving weights and structure for artificial neural networks (Eberhart & Shi, 1998), 
manufacture end milling (Tandon, 2000), and reactive power and voltage control (Yoshida 
et al., 1999). The development of PSO is inspired by the observation on the behaviors of bird 
flocking. A large number of birds flock synchronously, change direction suddenly, and 
scatter and regroup together. Each individual, called a particle, benefits from the experience 
of its own and that of the other members of the swarm during the search for food. The PSO 
models the social dynamics of flocks of birds and serves as an optimizer for nonlinear 
continuous functions. In order to deal with combinatorial optimization, the discrete version 
of PSO has also been introduced (Kennedy & Eberhart, 1997). However, in our experiments 
this discrete version does not show effective result for polygonal approximation problem. 
We conjecture that the deterioration is due to the linear combination of reference solutions 
which is often adopted in solving continuous function optimization. Thus, we add genetic 
features to enhance the search ability in combinatorial optimisation using the discrete PSO 
(Yin, 2006). 
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3.2.1 Particle representation and fitness evaluation  

Since particles of the PSO correspond to candidate solutions of the underlying problem, we 
use the particle to represent the approximating polygon by a binary vector. For the ith
particle, the corresponding representation is 

( ))1(10 ,...,, −= Niiii pppP  subject to 3
1

0
≥−

=

N

j ijp  and pij ∈ {0, 1}, (6) 

where pij = 1 if xj is one of the vertices chosen to represent the polygon, and pij = 0 otherwise. 
Thus, the particle representation indicates which data points constitute the vertex set T of 
the polygon and TpN

j ij =−

=

1

0
.

The fitness of the particle is evaluated in two ways. If the approximation error entailed by a 
candidate polygon exceeds the specified error tolerance, i.e., E > ε, the fitness of the 
corresponding particle will be assigned a negative value to express the infeasibility degree 
of this candidate solution, else the particle fitness is set to the inverse of the sum of particle 
bit values to assess the solution quality in terms of the number of vertices. More precisely, 
the fitness of particle Pi is determined by 
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Therefore, there are two optimization goals in our setting. The first one is to move the 
particle from infeasible solution space to feasible regions, and the second one is to fly the 
particle to a new position which may result in a polygon with fewer vertices, i.e., with better 
merit in problem objective. The two optimization goals are pursued simultaneously since 
the PSO evolves with a swarm of particles and each of which may invoke different fitness 
evaluation depending on the entailed approximation error. 

3.2.2 Genetic operations  

PSO is a population-based search paradigm using a swarm of particles, it is natural to 
compare PSO with GA which is another population-based search algorithm and is well-
known to the community. In PSO, each particle flies to a better position which is a 
randomized weighted sum of vectors based on its personal best (pbest) and the global best 
(gbest) positions, while in GA the quality of individual chromosome is improved by using 
two principal genetic operations: selection and reproduction. The selection operation picks the 
good individuals for survival to mimic the natural selection of the fittest and the 
reproduction operation provides a mechanism to exchange and recombine the information 
(building blocks) among good-quality individuals. The feature of genetic selection has been 
added to PSO for solving continuous function optimization problems (Angeline, 1998; 
Shigenori et al., 2003) and the experimental results demonstrated substantial improvement 
over the original version. In this chapter, we further devise the scheme for conducting the 
genetic reproduction with the discrete PSO. 
Since the particle vector adjustment formulae are in fact a linear combination of critical 
vectors with quasi-random coefficients, the newly explored parameter values are bounded 
between experienced vectors to some extent. This is perhaps a desired property for 
continuous function value optimization problems, however, it hinders the solution 
exploration for discrete combinatorial optimization. For the latter one, the building blocks of 



Polygonal Approximation of Digital Curves Using the State-of-the-art Metaheuristics 457

good quality solutions are segments of specific ordering or partial selections of elements, 
and the optimal solution may be obtained through recombination of those segments instead 
of a weighted sum of those values. Hence, we propose a new particle adjustment rule with 
genetic recombination for the jth bit of particle i as follows. 

( ) ( ) ( ) ( ) ( ) ( )jijijij gbestrandwwpbestrandwwwprandwwp 1,,,0 2211 ++= , (8) 

where 10 21 <<< ww  and w (•) and rand(•) are the threshold function and the probabilistic 
bit flipping function, respectively, and they are defined as follows. 

( )
<≤

=
otherwise,0
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where q1 ∈ U(0, 1) is a randomly drawn real number. Therefore, only one of the three terms 
on the right hand side of Eq. (8) will remain depending on the value of q1.

( )
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y

tqy
yrand  (10) 

Thus, rand(y) mutates the binary bit y with a small probability t (q2 is another random 
number drawn from U(0, 1)). To relate the new particle adjustment rule to genetic 
reproduction, we analyze Eq. (8) in two aspects. First, the particle Pi derives its every single 
bit from either one of pij, pbestij, or gbestj, this operation corresponds to a 3-way uniform 
crossover among Pi, pbesti, and gbest, such that the particle can exchange building blocks 
(segments of ordering or partial selections of elements) with personal and global 
experiences. Second, each bit attained in this way will be flipped with a small probability, 
analogous to the binary mutation performed in genetic algorithms. As such, the genetic 
reproduction, in particular, the crossover and mutation, have been added to the discrete 
PSO, and this new version is very likely more suitable to solve combinatorial optimization 
problems than the original one. 

3.3 Hybrid strategy 

Metaheuristics combine two elements, exploration and exploitation, in a framework. The 
exploration strategy searches for new regions, and once it finds a good region the 
exploitation heuristic further intensifies the search for this area. However, since the two 
strategies are usually inter-wound in the algorithm, the search is conducted to other regions 
before it finds the local optima. Many researchers have suggested to employ a hybrid 
strategy which embeds a local optimizer such as hill-climbing in between the iterations of 
the metaheuristics to enhance the searching ability. In the light of this, we propose to embed 
a local heuristic into the ACO- and the PSO-based approaches. To save the computational 
efforts, the local heuristic is only applied to the best candidate solution observed so far at 
each iteration. 
The local heuristic, named the segment-adjusting-and-merging, takes into account the 
problem-specific knowledge that the approximation error may be further reduced if the 
positions of the vertices of the polygon are appropriately adjusted, and that the number of 
vertices is decreased if we merge two adjacent segments under the constraint that the 
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resulting new polygon still satisfies the error tolerance. The two solution-improving 
processes are performed repeatedly until the number of vertices cannot be further 
decreased. 

4. Experimental Results and Discussions 

In this section, we present the computational results and evaluate the performance of the 
algorithms. The platform of the experiments is a PC with a 1.8 GHz CPU and 192 MB RAM. 
The algorithms are coded in C++. A number of benchmark curves borrowed from relevant 
literature are used for testing.  

4.1 Benchmark curves 

Three synthesized benchmark curves (see Fig. 1) and two real image curves (see Figs. 2-3) 
which are broadly used in the literature to evaluate various algorithms for polygonal 
approximation are included in our experiments for testing. As such the readers can easily 
compare the proposed algorithms with existing works. Fig. 1(a) is a leaf curve with 120 
points, Fig. 1(f) is a chromosome curve with 60 points, Fig. 1(k) is a semi-circle curve with 
102 points, Fig. 2(a) is a plane contour image with 682 edge points, and Fig. 3(a) is a fish 
contour image with 700 edge points. 

4.2 Competing metaheuristics 

In addition to evaluating the ACO-based and the PSO-based algorithms presented in Section 
3, we compare the results with those obtained using two other major metaheuristics: GA 
(Yin, 1999) and TS (Yin, 2000). The GA-based approach used the same solution 
representation scheme as that of the PSO-based mthod (see Eq. (6)). It applied a fitness 
function as k - −

=

1

0

N

j ijp  - max(E-ε, 0) where k is a constant. Besides using the traditional 

genetic operators (selection, crossover, mutation), a learning strategy is employed to 
improve the best chromosome observed so far at each iteration. The TS-based approach also 
followed Eq. (6) to generate its solution configuration. Three kinds of moves are defined: 
vertex-addition, vertex-deletion, and vertex-adjustment. As such the bounded neighborhood 
space is well defined. The tabu moves are enforced in order to prevent the current solution 
configuration getting into a subregion already visited. However, appropriate aspiration 
criteria are applied to resume a tabu move when it results in a better solution status than the 
ones observed so far.  

4.3 Comparative performances 

All of these metaheuristics have been proved to significantly outperform traditional local 
heuristics in solving the polygonal approximation problem (Yin, 2003; Yin, 2006). We thus 
focus our comparison among these metaheuristics only. The experiments on the three 
synthesized curves using the competing metaheuristics are shown in Table 1. As these 
metaheuristics are stochastic and each separate run of the same program may yield a 
different result, we report the average number of vertices (M) on the finally obtained 
polygon and the average consumed times in seconds (t) over 10 independent runs. The 
standard deviation ( Mσ ) of M is calculated for measuring the stability of the metaheuristics. 
It is evident from Tables 1 that the ACO- and the PSO-based approaches have better 
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performance than those of the GA-based and the TS-based approaches in terms of 
minimizing the value of M. This is due to the fact that the ACO- and the PSO-based 
methods further intensify the search in the neighborhood of the best solution observed so 
far using the hybrid strategy. All of the four competing metaheuristics have small values of 

Mσ , this means that these methods are all malleable against various curves with different 
properties. As for the computational times, all of these methods can derive quality results 
very quickly because the number of data points on the curves is small. 
Fig. 1 shows the visualization of the finally obtained approximating polygons with their 
specified error tolerance (ε ) and the number of yielded vertices (M) using various 
metaheuristics. It is seen that GA and TS yield worse approximating polygons with 
redundant vertices while ACO and PSO produce the least number of vertices but still 
preserving the main corner information. 

  GA TS ACO PSO 

ε M ( Mσ ) t M ( Mσ ) t M ( Mσ ) t M ( Mσ ) t

 150 15.6 (0.6) 0.4 10.6 (0.5) 0.1 11.0 (0.0) 0.9 10.7 (0.5) 0.4 

 100 16.3 (0.5) 0.3 13.7 (0.6) 0.1 12.6 (0.2) 0.8 12.4 (0.5) 0.3 

Leaf 90 17.3 (0.5) 0.3 14.6 (0.5) 0.1 12.8 (0.3) 0.9 13.0 (0.0) 0.3 

(N=120) 30 20.5 (0.6) 0.3 20.1 (0.5) 0.1 16.6 (0.4) 0.9 16.6 (0.5) 0.3 

 15 23.8 (0.6) 0.3 23.1 (0.5) 0.1 19.7 (0.3) 0.9 20.0 (0.0) 0.2 

 30 7.3 (0.4) 0.2 6.7 (0.4) 0.1 6.0 (0.0) 0.4 6.0 (0.0) 0.2 

20 9.0 (0.6) 0.2 8.0 (0.3) 0.1 7.6 (0.3) 0.5 7.6 (0.7) 0.2 

 10 10.2 (0.4) 0.2 11.0 (0.4) 0.1 10.0 (0.3) 0.5 10.5 (0.5) 0.1 

(N=60) 8 12.2 (0.5) 0.2 12.2 (0.5) 0.1 11.0 (0.4) 0.5 11.0 (0.0) 0.1 

 6 15.2 (0.6) 0.2 14.4 (0.5) 0.1 12.2 (0.3) 0.5 12.4 (0.7) 0.1 

 60 13.2 (0.4) 0.3 11.0 (0.4) 0.1 10.0 (0.0) 0.8 10.0 (0.0) 0.3 

 30 13.9 (0.7) 0.3 13.6 (0.5) 0.1 12.0 (0.0) 0.8 12.1 (0.3) 0.3 

Semicircle 25 16.8 (0.7) 0.3 14.9 (0.6) 0.1 13.0 (0.0) 0.7 13.2 (0.4) 0.3 

(N=102) 20 19.2 (0.6) 0.3 16.2 (0.6) 0.1 15.8 (0.4) 0.7 14.6 (0.7) 0.2 

 15 23.0 (0.9) 0.3 18.3 (0.7) 0.1 16.8 (0.4) 0.7 15.8 (1.2) 0.2 

Table 1. The comparative results on synthesized curves using competing metaheuristics 

Chromosom



Vision Systems - Segmentation and Pattern Recognition 460

 (ε =15, M =24)  (ε =15, M =23) (ε =15, M =20) (ε =15, M =20) 
(a) Leaf (b) GA (c) TS (d) ACO (e) PSO 

                                  
 (ε =6, M =15)  (ε =6,  M =14) (ε =6, M =12) (ε =6, M =12) 
(f) Chromosome (g) GA (h) TS (i) ACO (j) PSO 

 (ε =15, M =23)  (ε =15, M =19) (ε =15, M =16) (ε =15, M =16) 
(k) Semi-circle (l) GA (m) TS (n) ACO (o) PSO 

Fig. 1. Finally obtained approximating polygons on the synthesized curves with their 
specified error tolerance (ε ) and the number of yielded vertices (M) using various 
metaheuristics

To demonstrate the feasibility of the metaheuristics for real-world applications, two real 
images containing a symbol of a plane and a fish, respectively, are further experimented 
with. The two images are binarized and the contour edge points are extracted by detecting 
the black-white transitions (see Figs. 2(a) and 3(a)). By specifying various values of error 
tolerance, the comparative performances obtained using the competing metaheuristics are 
summarized in Table 2. It is observed that the performance of the GA- and the TS-based 
methods deteriorates in the two real applications as the error tolerance decreases where the 
numbers of polygon vertices are significantly greater than those obtained by the ACO- and 
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the PSO-based approaches. However, the TS-based approach is the fastest one because it 
only uses one seed solution to conduct the search path while the others are population-
based searching methods. 
Figs. 2-3 show the finally obtained approximating polygons with their specified error 
tolerance (ε ) and the number of yielded vertices (M) using various metaheuristics. Similary, 
the ACO- and the PSO-based methods econimcally preserve the main corner information on 
the curve while the GA- and the TS-based methods may use multiple vertices to 
approximate some corners in a small region. 
To justify the reason behind the performance difference observed, we disable the application 
of the hybrid strategy in the ACO- and the PSO-based approaches and reperform the 
experiments again. We found that the new results obtained by the ACO- and the PSO-based 
methods without hybrid strategy become comparable with that obtained by the GA- and the 
TS-based methods. Therefore, the problem-specific local heuristics such as the segment-
adjusting-and-merging are the key-reason that results in the performance differences among 
these metaheuristics. It is worth further studying other appropriate problem-specific local 
heuristics, e.g., the scan-along search, split-and-merge process, and dominant-point 
detection, to be hybridized with these metaheuristics. Note that the learning strategy 
employed by the GA-based approach is a general strategy that may be not as efficient as the 
problem-specific heuristics in some complex problems but it is useful when the probelm-
specific heuristics are not easy to design.  

  GA TS ACO PSO 

ε M ( Mσ ) t M ( Mσ ) t M ( Mσ ) t M ( Mσ ) t

 3000 14.2 (0.8) 2.5 13.0 (0.3) 0.4 12.1 (0.4) 5.0 12.3 (0.5) 6.4 

 2000 15.1 (0.9) 2.4 14.4 (0.6) 0.4 13.0 (0.2) 4.7 13.0 (0.0) 6.1 

Plane 1000 17.4 (0.6) 2.3 16.7 (0.5) 0.4 14.0 (0.6) 4.8 15.3 (0.8) 5.6 

(N=682) 500 21.3 (0.8) 2.2 19.6 (0.6) 0.4 17.8 (0.5) 4.5 17.4 (0.5) 5.3 

 100 33.8 (0.9) 2.4 31.3 (0.5) 0.4 28.1 (0.7) 4.6 24.0 (0.6) 4.5 

 4000 16.5 (0.5) 2.3 14.0 (0.3) 0.5 12.2 (0.4) 5.7 15.8 (0.4) 5.5 

 3000 17.4 (0.6) 2.2 16.0 (0.3) 0.5 14.6 (0.3) 5.9 16.9 (0.3) 5.1 

Fish 2000 22.1 (1.0) 2.2 21.2 (0.4) 0.4 17.1 (0.5) 5.5 18.6 (0.9) 4.9 

(N=700) 1000 32.4 (0.9) 2.3 29.1 (1.0) 0.5 26.8 (0.7) 5.6 25.3 (0.5) 4.0 

 500 37.0 (1.1) 2.4 35.9 (1.2) 0.4 34.8 (0.7) 5.6 32.8 (0.6) 3.4 

Table 2. The comparative results on real image curves using competing metaheuristics 
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  (ε =1000, M =17) (ε =1000, M =16) 
 (a) Plane contour image (b) GA (c) TS 

        
 (ε =1000, M =14) (ε =1000, M =15) 
 (d) ACO (e) PSO  

Fig. 2. Finally obtained approximating polygons one the plane image with their specified 
error tolerance (ε ) and the number of yielded vertices (M) using various metaheuristics 
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  (ε =2000, M =22) (ε =2000, M =21) 
 (a) Fish contour image (b) GA (c) TS 

    

 (ε =2000, M =17) (ε =2000, M =18) 
 (d) ACO (e) PSO 

Fig. 3. Finally obtained approximating polygons on the fish image with their specified error 
tolerance (ε ) and the number of yielded vertices (M) using various metaheuristics 

5. Conclusion 

In this chapter, we investigate the polygonal approximation problem which is fundamental 
to many image analysis tasks. Traditional problem-specific heuristics are not suitable to be 
applied alone because the quality of the obtained result depends on the initial setting of the 
algorithms and the properties of the curves. On the other hand, metaheuristic approaches 
can produce stable approximation quality for various kinds of curves. We have illustrated 
the implementations based on two newly developed metaheuristics, namely the ACO and 
the PSO. To circumvent the underlying problem, specific features have been introduced 
such as the ACO graph representation, PSO genetic operators, penalty functions, and the 
hybrid strategy. Experimental results on several benchmark curves have manifested that 
these new features can improve the performance of metaheuristics in solving the polygonal 
approximation problem.  
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1. Introduction 

Nowadays the systems of information extraction that include spatial apertures of signal 
sensors are widely used in robotics, for the remote exploration of Earth, in medicine, 
geology and in other fields. Such sensors generate dynamic arrays of data having the proper 
feature which is in their space-time correlation and due to which they can be represented in 
the form of multidimensional images (Gonzalez & Woods, 2002). When producing 
algorithmic software for the processing of such images it is necessary to take into account 
the dynamics of the scene to be observed, distortions caused by signal propagation 
environment, spatial movements of signal sensors and imperfection of their construction. 
The influence of the mentioned factors can be described through mathematical models of 
space-time deformations of multidimensional grids with the specified images.  
The estimation of varying parameters of image spatial deformations is required not only in 
robotics applications, but also to solve a wide range of other problems, for example, for 
automated search of a fragment on the image, navigational tracking of mobile object course 
in the conditions of limited visibility, combination of multiregion images at remote 
explorations of Earth, in medical research. A lot of scientific calls for papers are devoted to 
different problems of image sequence space-time deformation parameters estimation (the 
bibliography is given, for example, in (Tashlinskii, 2000)). This chapter is devoted to one of 
the directions of solving this type of problems, where pseudogradient estimation of image 
interframe geometrical deformations (IIGDs) is considered.  
Let us assume that the model of IIGDs is defined to an accuracy of a parameters vector α
and the estimation quality criterion is formulated in terms of some functional )J(α
minimization showing expected losses. However, it is impossible to find optimal parameters 

*α  in the mentioned sense in view of incompleteness of description of the images to be 
observed. In this case we can estimate the parameters α  on the basis of a given realization 
Z  analysis of the image to be observed by means of some adaptation procedure which 
minimizes ),J()J( Zα=α  for the given realization Z . However, it is reasonable to avoid this 

intermediate state of the research and estimate α  directly on values ),ˆJ( Zα  (Polyak & 
Tsypkin, 1984): 

),ˆJ(ˆˆ
11 Ztttt −− ∇−= ααα , (1) 
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where tα̂  – next after 1
ˆ

−αt  approximation of the minimum point of ),ˆJ( Zα ; t  – gain 
matrix (positively defined matrix determining a value of the estimates change at the t -th
iteration); ),ˆJ( 1 Zt−α∇  – gradient of the functional ),ˆJ( 1 Zt−α . The necessity of multiple 
cumbersome calculations hinders the procedure (1) application in the image processing. It is 
possible to significantly reduce computational expenses due to the usage of contraction 

),ˆJ( 1 tt Z−α∇  instead of ),ˆJ( 1 Zt−α∇  at some part tZ  of realization Z  at each iteration 
choosing, for example, tZ  in the form of a sliding window. For relatively large-sized 
images, the analysis of approaches (Tashlinskii, 2000; Minkina et al., 2007) to the synthesis of 
algorithms of IIGDs estimation in real time showed that it is expedient to seek a decision, 
satisfying the requirements of simplicity, rapid convergence and efficiency in various real 
situations, among recurrent non-identification algorithms. The pseudogradient algorithms 
(PGAs) constitute the most representative class of such algorithms. 
The conception of the pseudogradient was introduced in work (Polyak & Tsypkin, 1973). A 
unified approach to the analysis and synthesis of various procedures of the stochastic 
minimization has been developed on the basis of it. For the given problem to be solved the 
pseudogradient tβ  may be represented as any random vector in the parameter space 

depending on a function of losses and estimates 1
ˆ

−αt  at the t -th iteration if the following 
condition is satisfied 

[ ] { } 0M),ˆJ( 1 ≥βα∇ − t
T

t Z , (2) 

where T  – sign of transposition; {}⋅M  – symbol of the mathematical expectation. In the 
geometrical interpretation the vector tβ  is the pseudogradient if it makes, on average, an 

acute angle with the exact value of the functional ),ˆJ( Zα  gradient. The class of PGAs 
includes algorithms of stochastic approximation, random search and many others. 
The following procedure is used in PGA (Tsypkin, 1995) 

tttt β−α=α −1
ˆˆ , (3) 

where α  – vector of the parameters to be estimated; Tt ,1=  – iteration number; 0α̂  – initial 
approximation of the parameters vector; T  – number of iterations. The algorithm is 
considered to be pseudogradient if tβ  is the pseudogradient at each its iteration. In this case 
the iterations are, on average, performed in the direction of reduction of )J(α  and sequence 

...,ˆ,...,ˆ,ˆ
21 tααα  converges to the optimal parameters when satisfying relatively weak 

conditions (Polyak, 1976). 
If realizations tα , ,...,2,1=t  of the parameter α  to be estimated are observed as, for 
example, in the problems of image brightness prediction, then we can choose ttt α−α=β ˆ  as 
the pseudogradient, where the estimate tα̂  is found on realization Z  or on a part of 
realization tZ . In problems of image processing the quality functional ),J( Zα  is often 
expressed through the mathematical expectation of some function ( )Zf ,α :
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( )( ){ }ZfZ ,M),J( α=α . (4) 

In particular, it can be mean square of error of some value χ :

( ) ( )( ) ( )ZZZf ,,ˆ, 22 αΔ=χ−αχ=α ,

where χ  – the exact value and ( )Z,ˆ αχ  – its estimate. In this case the condition of the 
pseudogradientness is met if differentiation under the symbol of the mathematical 
expectation in (4) is possible. 
We should also mention that the procedure (3) does not require compulsory finding 

),ˆJ( 1 tt Z−α  or ),ˆJ( 1 tt Z−α∇ , i.e. )J(α  can be non-observable. It is necessary to meet only the 
condition of the pseudogradientness. At the non-observable realization an auxiliary 
observable quality functional )Q(α  can be introduced and a noisy value )Q(α  can be 

chosen as tβ , whose point of extremum (not necessary the point of minimum) is obtained at 
the same optimal parameters. Later on, this chosen functional characterizing the estimation 
quality will be called the goal function. For example, when estimating the mathematical 
expectation of random value X  the following value can be selected as the goal function  

( ){ }2)(),Q( α−=α XMX ,

then, in the simplest case 1ˆ −α−=β ttt x , where tx  – value X  at the t -th iteration. When 
estimating the correlation coefficient between the centered values X  and Y  the goal 
function can be represented as 

( ){ }2),,Q( YXMYX −α=α ,

then, )ˆ( 1 tttt yx −α=β − , where tx  and ty  – realizations of X  and Y  at the t -th iteration. 
The problem of IIGDs estimation considered in this chapter is related to the second type of 
problems, where it is necessary to use the auxiliary quality functional. 
Let us note one more important property of the pseudogradient procedures that consists in 
that, tβ  assumes dependence on estimation values pα̂ , tp <  in the preceding samples and 
rows of the image that enables to run image processing in the order of some sweep. The last 
property is very important at practical realization of the algorithms. 
Thus, to synthesize fast PGAs of parameters estimation α , it is necessary to find a relatively 
easily calculated pseudogradient of the given goal function of the estimation quality. In the 
next part, several possible ways of computational expense reduction when finding the goal 
function pseudogradient are considered. 

2. Choice of pseudogradient 

When synthesizing PGA the important stages are in the choice of a goal function and a rule 
of finding its pseudogradient. Let us consider some approaches to solve these problems.  
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Let the studied frames ( ) { }jj jz Ω∈= :)1(1Z  and ( ) =2Z { }jj jz Ω∈:)2(  of images specified on a 

regular samples grid ( ){ }kknj Njjjj ,1:,...,1 ===Ω  represent additive mixture of the 

informational pattern { }jx=X  and a pattern { }jθ=Θ  of an independent noise: 

( ) ( ) ( ) ,111 XZ += ( ) ( ) ( ) ,222 XZ +=   (5) 

where T
m),...,,( 21 ααα=α  – vector of unknown geometrical transformation parameters of 

the image ( ) XX =1  into the image ( ) ( ),,2 α= jXX  for example, rotation, shift in some 

direction, scale change etc. In doing so, jx , )1(
jθ  and )2(

jθ  are homogeneous and have 

Gaussian distribution with zero mean and known covariance functions { }ljljx xxMR = ;

ljljR ,
2

. δσ= θθ , where 
≠
=

=δ
.,0
;,1

, ljif
ljif

lj  – Kronecker symbol; Ω∈lj, . 

Under the assumed constraints the goal function for the gradient estimation of the 
parameters vector α  can be written using the conditions of the optimal estimation obtained 
by means of the maximum likelihood method in work (Vasiliev & Tashlinskii, 1998). In 
particular, it is shown that if the image ( )1Z  is noisy, then the maximization of the likelihood 
function is almost the same as minimization of the quadratic form. Then, for the gradient of 
the goal function we obtain 

( ) ( ) ( ) ( ) ( )α−α−∇=α∇ − ,ˆ,ˆ,J 212 ljZ lz

T

j XZVXZ ,  (6) 

where zV  – covariance matrix of the conditional distribution { }( )α,)1()2( Zjzw ,

( )α,ˆ jX  – prediction found on the basis of observations )1(Z , which is the best estimate in 

the sense of estimation error variance minimum of a deformed image . The point above the 
matrices denotes their lexicographic representation. In the same work it is shown that in 

many cases the product )(ˆ)(ˆ 1 αα − XVX z
T  can be considered to be independent of the 

deformation parameters α . Then the gradient of the goal function is determined by the 
relation

( ) =α∇ Z,J ( )α∇− − )2(1ˆ ZVX z . (7) 

We should note that in the last case to find the optimal estimates of the parameters *α  the 
maximization of the goal function is carried out. It requires performing of recurrent 
algorithm iterations not in the direction of the antigradient, but in the direction of the 
gradient which corresponds to minus in (7). 
It is obvious, the expressions (6) and (7) can not be realized in systems of continuous image 
processing, because it requires great computational expenses. However, their simplification 
enables to obtain various realizable pseudogradients of the goal function. Let us consider 
some possible ways of such simplification. If we assume that the image insignificantly varies 
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from frame to frame (i.e. )1(Z  and )2(Z  are noisy realizations of the images X  and ( )α,jX ),

then there is no need to calculate the unwieldy covariance matrix zV  of the conditional 

distribution { }( )α,)1()2( Zjzw , because in this case ljz ,
2δσ≈ θV , where 2

θσ  – variance of 

additive noise according to the model of observations (5). However, in this case calculation 
of the optimal prediction ( )α,ˆ jx  requires matrix operations, which lead to very large 
computational expenses for large-sized images. We can obtain their reduction by 
substituting the optimal prediction of values of deformed frame for prediction at limited 
local region of image. We can achieve even more calculations reduction using various 
interpolations for the prediction. When performing the interpolations at the current iteration 
of the algorithm the estimates α̂  obtained at the preceding iteration are employed (Minkina 
et al., 2007). Then, to find the pseudogradient at the t -th iteration of the algorithm it is 
enough to use a local sample { })1(

,
)2(

,
~, tjtjt zzZ =  of samples, where )2(

,tjz  – samples of the 

deformed image )2(Z  contained in a local sample at the t -th iteration and ( )1
)1()1(

,
ˆ,~~

−α= tttj jzz

– brightness values from continuous image )1(~Ζ  obtained from )(1
Z  through the chosen 

interpolation; jtjtj Ω∈Ω∈ ,  – sample coordinates )2(
,tjz  ( tj ,Ω  – plan of a local sample). The 

number of samples { })2(
,tjz  in tZ  will be called the local sample size and denoted with μ .

Under these assumptions the pseudogradients obtained on the basis of relations (6) and (7) 
will become 
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where )2(
,
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,,

~
tjtjtj zz −=Δ .

We should note that the pseudogradient (8) is used for solving the problem of interframe 
difference mean square minimization. In this case it will be the goal function 

( ) ( )( )=α 21 ,,J ZZ ( )2)1()2( ~1
jj

j
zz −
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,

where  – number of samples in the frame )2(Z .
The pseudogradient (9) corresponds to the problem of interframe correlation sample 
coefficient maximization: 
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Thus, in practical problems of IIGDs estimation the basic goal functions can be the 
interframe difference mean square and the interframe correlation sample coefficient. We 
should note that the pseudogradient (9) in contrast to (8) is invariant to the total variability 
of samples brightness of the image )2(Z . The choice of interframe difference mean square as 

the goal function is expedient in absence of multiplicative distortions and noncentered 
interference in the observable image models. 
The vector ( )),Q( 1 ttt Z−α∇φ=β  can be chosen as a pseudogradient, where ( )⋅φ  – vector 

function of the same dimensionality as Q∇ . For example, the function ( )⋅φ  can be linear 
transformation with the positively determined matrix. At that, if errors with respect to the 
true gradient have symmetric distributions with reference to zero, then the condition of the 
pseudogradientness (2) holds for any odd function ( )⋅φ . In particular, very simple and at the 
same time well converging algorithms of the parameters estimation are obtained when 
choosing the following sign function as ( )⋅φ  (Korn & Korn, 1968) 

( )),ˆQ(sgn 1 ttt Z−α∇=β , (10) 

where ( )T
m )Qsgn(,...),Qsgn(Q)sgn( 1 ∇∇=∇ . When using the peseudogradient (10) and 

the diagonal gain matrix in PGA (3) the i -th component of the vector tα̂  is different from 

the corresponding component of the vector 1
ˆ

−αt  by ti ,λ± , where ti ,λ±  – corresponding 

diagonal element of the gain matrix t ; mi ,1= . At that, PGA iterations are carried out at 
finite and a priori known number of directions of the space of the parameters to be 
estimated. If each component of the error (10) in relation to the true gradient takes positive 
and negative values with equal probabilities, then the pseudogradientness condition (2) is 
met. Let us note the algorithms that use the pseudogradients of type (10) have wide 
application in various problems requiring IIGDs estimation in the conditions of complex 
noise assemblage. 

3. Pseofogradient algorithms for interframe geometrical deformations 
parameters estimation  

3.1 Algorithms at given set of geometrical deformations model parameters 

If a parameters set ( )T
mααα=α ,...,, 21  of possible IIGDs is known, then at chosen goal 

function the problem amounts to estimation of their values that are constant on the images 
( )1Z  and ( )2Z . For example, if for (3) the interframe difference mean square is chosen as a 

goal function and its pseudogradient is given by relations (8) and (10), then to estimate α
we accordingly obtain the following algorithms: 
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Experimental study show it is expedient to extend the algorithms set (11)–(12) by adding 
two more ones 
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In the algorithm (11) all the components of estimation increment vector depend on 
interframe differences tj ,Δ , jtjtj Ω∈Ω∈ , . It determines higher estimation convergence 

speed compared to other given algorithms. However, at finite number of iterations the 
precision of (11) is often lower because we can not always attain little tj ,Δ  and then, the 

estimates variation steps can be too large. In the algorithm (13) only signs of tj ,Δ  are used. It 

is preferable to apply it when we want to avoid excessive influence of modulo large values 

tj ,Δ , for example, in presence of infrequent but intensive impulse interference on image. 

The algorithm (12) is even more immune to interference, but it may not operate well in the 
neighborhood of zero values tj ,Δ . If high accuracy of estimation is attained at some 

iteration, then the next step can be taken in the direction backward from optimal values of 
the parameters. To eliminate this disadvantage we can employ a sign function with 
expanded zero: 

ε>
ε≤
ε−<−

=ε
,,1
,,0
,,1

)(sgn
x
x
x

x    0>ε .

In the algorithm (14) the increase of convergence speed at large values tj ,Δ  combines with 

immunity to derivatives estimation errors. As a result this algorithm is more resistant to 
interference than the algorithm (11). 
When choosing the interframe correlation sample coefficient as a goal function the 
properties of the corresponding algorithms are close to the properties of the algorithms  
(11)–(14). The advantage in this case is in high immunity to additive noise and close to linear 
brightness distortions. Among disadvantages are larger computational expenses 
(determined by large size of the local sample) and also high sensibility to local extremums of 
the goal function. 
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It is necessary to note that the convergence speed of the estimates, formed by PGAs, is 
higher if the sequence of local samples, which is the basis for parameters estimation, is not 
correlated. To reduce correlation of the observations sequence it is expedient to choose 
random coordinates of samples of the local sample. 
The algorithms (11)–(14) demonstrated high efficiency when estimating interframe 
deformations of simulated and real images. In particular, for two-dimensional images of 
size 64x64 pixels formed by means of the wave model (Krasheninnikov, 2003) shifted by 
several steps of sample grid and turned at any angle, the shift was estimated with error 
variance of about 4102 −⋅ steps of the sample grid and rotation – 5105 −⋅  radians. Let us give 
the results of analytical calculation of the probability ( )ΔP  of parallel shift estimate 1ĥ  error 
spillover of the given interval [ ]aa−=Δ . The calculation was carried out on the basis of the 
accuracy analysis method of PGAs estimates at finite number of iterations (Tashlinskii & 
Tikhonov, 2001) for the PGA (12) and the following parameters: the images with a Gaussian 
brightness distribution and the autocorrelation function with correlation radius equal to 5; 
the signal variance-to-noise variance ratio 100=g ; local sample size 10=μ ; initial error of 

the shift is ( )Toh 4,5= ; =a 1.0, 0.3  0.1 (here, by correlation radius we imply the distance in 
steps of the sample grid when the autocorrelation function of the image is equal to 0.5). The 
value of estimate shift increment in one case was chosen to be constant 

1.0,2,1 ==λ=λ=λ consttt  and in the other – falling off according to the rule 

( )ttt 01.010
1var,2,1 +

==λ=λ . The plots of the probability ( )ΔP  are shown in Fig. 1. It 

follows from the analysis of the plots that at constant λ  the balance between tendency of the 
estimate to the true value and error, caused by λ , comes at a certain iteration. The further 
increase of iterations number does not lead to estimates improvement. It enables to find the 
minimum number of iterations that is necessary to achieve the highest possible accuracy of 
parameter estimation. 
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Fig. 1. Probability of estimate error spillover of the confidence interval 

For the above-mentioned characteristics of images and PGA in Fig. 2 the shift 1h  estimate 
error probability distribution change at both constant (Fig. 2,a) and varying (Fig. 2,b) value 
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of the shift estimate increment is shown. For clearness the distributions are presented only 
for 12 iterations from the range of 10 to 100. The interframe difference mean square at local 
sample size 4=μ  was used as a goal function. The analysis of the plots shows that at 
constant shift increment step the process of probability distributions forming stabilizes after 
about 500th iteration. At varying shift increment step the process of probability distribution 
forming does not have an equilibrium state and the estimate variance theoretically 
permanently decreases. 
Let us note that at known set of IIGD parameters the algorithms (11)–(14) have shown a 
good performance at automated search of local fragments on images. 

3.2 Algorithms at unknown set of geometrical deformations model parameters 

If the form of IIGD is not given then we can specify a certain sample grid deformations 
model 

( ) ( ) ( )nnj hjhjhjhjj +++=+=α ...,, 2211 , (15) 
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Fig. 2. Probability distributions of the shift estimate error at constant and varying estimate 
increment steps 

considering its parameters to be varying, where jk jj Ω∈∈ , kk Nj ,1= , nk ,1= ;

jΩ  – n -dimensional rectangular grid. Then, the algorithm (3) can be written in the form 

β−= −− 11
ˆ,,ˆˆ

ttttttt hjZhh   (16) 

In this case to ensure variability of the estimates the components of the gain matrix t  in 
(16) have to be bounded below. Then, assuming =t  and choosing the interframe 
difference mean square as a goal function, we come to the algorithm 
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In work (Tashlinskii, 2000) it is shown that if point-to-point correlation is within the limits 
0.8 ÷ 0.99 and signal variance-to-noise variance ratio is more than 50, then for many 
problems of IIGDs estimation it is enough to choose 1=μ  in (17). In spite of the simplicity 
the algorithm (17) is rather effective at high correlation of the shifts jh  in the direction of 

image scanning and relatively minor interframe brightness distortions. However, only one-
dimensional filtering of deformation parameters that does not take into account interrow 
and interframe correlation is carried out in it. The simplest way to take into account this 
correlation can be in refinement of the estimates, obtained at one pass through the images. 
For that we can perform repeated passes at lesser values λ  in the backward and other 
directions (along columns, diagonals) during which the obtained estimates are corrected.  
The algorithms of the type (17) have shown a good performance at automatic combination 
of image fragments that have reciprocal spatial and amplitude deformations (the problem of 
image «pasting»). This problem often occurs when forming a unified image from a sequence 
of frames, obtained from a mobile object, that have small common regions on the adjacent 
frames. When solving the mentioned problem it is required as a rule to ensure continuity of 
spatial and brightness characteristics on the resulting image. The considered algorithms 
enable to do it. To illustrate it in Fig.3 an example of «pasting» of images is presented, where 
a) and b) – are the images of size 100 × 160 elements to be connected, having parallel shift 

( )Th 2.0,5.0 −−= , rotation angle o5.0=ϕ  and scale coefficient 2.1=k ; c) – the result of 
«pasting» before spatial correction using the obtained estimates; d) – the result of «pasting» 

after correction. The estimates accounted for )13.0,676.0(ˆ −−=h , ϕ̂ o509.0= , 18.1ˆ =k .

a) b) c) d) 
Fig. 3. An example of automated «pasting» of images 
Basically, the model (15) enables to define any IIGDs. However, if at the chosen order of the 
images pass the shifts jh  change rapidly then their estimation by means of PGA (17) is 

difficult. It is due to the fact that when variation speed of the shifts increases in the direction 
of the image pass it is necessary to increase steps ( )ttβ  of PGA (17). The last, in its turn, 
leads to estimation error increase. In this situation we can not improve the estimates even by 
repeated passes. The mentioned contradiction can be solved due to the usage at each 
following pass information about estimates, obtained at the preceding passes. Let us 
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consider the algorithm that forms the deformation matrix lH  of size nNNN ××× ...21  (where  
n  – image dimensionality) as an example of such an approach. This matrix contains shifts 

estimates )(ˆ l
jh  of all image pixels, corresponding to sample grid nodes of the frame ( )1Z

after the l -th pass. The method of estimates forming can be various, for example, it can be 
determined by available conceptions regarding physical nature of geometrical deformations. 
Assuming, that all elements of the matrix 1−lH  at the ( )1−l -th pass have been determined 
we can write 

)(ˆ l
jl h=H { }α= − )()1( ˆ,ˆ l

t
l

jhf ,

( )( ))(
1

)1(
,

)1()2(
,

)(
1

)( ˆ,~,ˆˆ l
t

l
tjttjlt

l
t

l
t hjzz −

−
− α+β−α=α ,

where ( )Tl
tm

l
t

l
t

l
t

)(
,

)(
,2

)(
,1

)( ˆ,...,ˆ,ˆˆ ααα=α ; Ω∈Ω∈ )(l
ttj ;

)(
,

)(
,1

,

0...0
............
0...0

l
tn

l
t

tl

λ

λ
= ; )2(

,tjz ,

( ))1()1(~ −+ l
tjt hjz )(l

tZ∈ ; )(l
tZ  – local sample of the goal function for the pseudogradient 

estimation at the t -th iteration of the l -th pass of the algorithm; Ll ,1=  - pass number;  
L  – given number of passes. Choosing various goal functions and pseudogradients we can 
obtain different algorithms. For example, if we choose the pseudogradient (10) for the 

interframe difference mean square and assume l
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  (18) 

If IIGDs with known parameters set (for example, the common for all image shift, rotation 
etc.) are present along with deformations of unknown type, then values of these parameters 
can be estimated, specified and taken into account when forming elements of matrix lH  at 
each algorithm pass.  
Another advantage of the algorithms of the type (18) is that they enable to estimate IIGDs 
that do not satisfy the continuity requirement. 
An example of such estimation is shown in Fig. 4, where a) and b) – images of size 256 × 256
elements having reciprocal shifts ( 5.11 =h , 5.32 =h ), besides in the lower image the 
continuity of geometrical deformations is violated (5 rows are missing) and the fragment is 
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absent; c) – result of parameter 1h  estimation at 40=L  and 1=μ . The sudden change 
corresponding to the break of the parameter 1h  is well visible. Besides in the region, 
corresponding to the absent fragment, the estimates have significantly differing statistical 
properties and due to which these regions can be easily identified. 
One of the disadvantages of PGA at IIGD parameters estimation is in a relatively minor 
definition domain of parameters, where effective convergence of estimates is ensured (not 
large operating range). The size of this region is determined by sample correlation that can 
appear in the local sample tZ . The situation is also complicated by the fact that in real 
images samples of reference and deformed images taken rather far from each other are 
almost non-correlated. At operating with real images another serious disadvantage of PGAs 
is in the possibility of the estimates to converge to points of false extremums of the goal 
function in the parameter space. 

3.3 Algorithms with adaptive forming of local sample size 

In view of random character of images and noise, the estimate of the goal function is not 
unimodal and besides the global extremum it also contains false local extremums. The local 
extremums appear because of correlatedness of separate extensive objects on the image and 
are exposed if a portion of samples of the local sample appears into these regions, i.e. they 
are caused by limited size of the local sample. As local sample increases or changes the 
probability of this effect appearance sharply decreases. As a result it is reasonable to verify 
on the goal function local extremums attributes at each iteration of estimation and if any, to 
increase sample size or change it. Here, the sample size μ  becomes an adaptive value. 
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Fig. 4. An example of geometrical deformations estimation that does not satisfy the 
continuity requirement 
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Let us consider only one example of construction of IIGD parameter estimation PGA, where 
μ  is adjusted automatically during the procedure performing at each iteration. A current 
iteration of parameter estimation is carried out when a certain condition is met. If at 
minimal μ  for the current iteration the condition is not met, then μ  increases step-by-step 
until the condition is fulfilled. So for the local sample, formed at the given iteration, its size 
is to be minimum to meet the condition of the iteration realization. For definiteness, we 
assume that the PGA (3) with the pseudogradient (10) and the diagonal gain matrix t  is 
used. Then, the estimates for the i -th parameter are formed according to the following rule: 

( )( )tttittiti Z,ˆsgnˆˆ 1,1,1, αβλα=α +++ , Tt ,1= , mi ,1= ,

where the signs «–» and «+» correspond to the problems of minimization and maximization 
of the goal function. 
Given a certain initial sample size mintμ , whose minimum value at interframe correlation 
sample coefficient maximization must be not less than 2 and at the interframe difference 
mean square minimization – is equal to 1. To find numerical values in the conditions of the 
iteration realization we use the goal function estimates obtained at the corresponding μ . Let 
us denote the goal function estimate with ( )ktq μ  which is calculated at the t -th iteration on 

the samples )2(
,tjz  and )1(

,
~

tjz  of the local sample of size kμ  and as ( )ktq μ±  – goal function 

estimate at the t -th iteration at the same kμ  calculated on samples )2(
,tjz  and 

)ˆ...,ˆ...,ˆ,(~
1,,1,1,1

)1(
−α−−± αΔ±αα tmitittjz , i.e. when a certain increment 0>Δαi  is specified 

Ω∈Ω∈ ttj  for the parameter iα  estimate. 
Let us fulfill the following condition of the iteration realization: the iteration of finding the 
current estimate 1,ˆ +α ti  is not performed and mintμ  increases by 1 (a new pair of samples 

)2(
,tjz  and )1(

,
~

tjz  is added to the local sample) in two cases: 

– if at the current t -th iteration the estimate ( )minttq μ  for the local sample size mintμ  is 

«better» than both the values ( )minttq μ+  and ( )minttq μ− ;
– if at the current t -th iteration the estimate ( )minttq μ  for the local sample size mintμ  is 

«worse» than the values ( )minttq μ+  and ( )minttq μ−  but at that ( )minttq μ+ = ( )minttq μ− .
After that the sample size increases by one ( mintμ +1) and the above-mentioned conditions 
are verified again. If one of them is fulfilled, then μ  increases by one again and so on right 
up to a certain value maxμ . If maxμ  is attained, the following iteration of the parameter iα
estimation is performed. If at the current μ  the conditions are not met, then the next  
( )1+t -th iteration of the estimate 1,ˆ +α ti  forming for the parameter iα  is carried out. 
In particular, when maximizing the goal function we can write the procedure of parameter 

iα  estimation in the following form 
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  (19) 

Let us note that as t  increases the value mintμ  varies according to a certain prescribed rule 
that is defined by the problem to be solved, in particular, in the simplest case constt =μ min .
In Fig. 5 experimental results obtained for the algorithm (19) realization are presented. In the 
experiment a real image of optical range with correlation radius equal to 5 steps on the 
sample grid was used. A parameter to be estimated was the parallel shift ( )Th 5.0,10= . The 
shifted image was additionally noised by an independent centered Gaussian noise. The 
dependencies of tμ  as a function of the number of iterations, averaged on 50 realizations, 
are shown in Fig. 5,a. Here, the dependence 1 corresponds to signal variance-to-noise 
variance ratio g =100 and the dependence 2 – g =50. It is seen that for great errors of the 
estimate the sample size is small (for g =100 at t =10 it is equal to about 2 and at t =500 – to 
about 2.3) and it increases monotonously on average as the number of iterations increases 
(attaining about 6 at g =100 and t =2000). In Fig. 5,b plots of the estimation error hε  versus 
the number of iterations are presented, where curve 1 corresponds to the results, obtained 
for the adaptive forming of tμ , and curve 2 – at constant mμ=μ , where 

=
μ=μ

2000

1k
km  – average sample size for t  varying from 1 to 2000. The results are averaged on 

250 realizations. It is obvious at small number of iterations there is a loss in estimation 
accuracy (at the 100th iteration it is about 5 per cent). It can be explained by high speed of the 
algorithm convergence with constant μ  at the initial stage of estimation (due to a greater 
average of μ ). However, at equal computational expenses (to the 2000th iteration) a gain in 
accuracy of about 2.4 times as large is guaranteed.  
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Fig. 5. An example of dependence of local sample size and estimate error versus the  
number of iterations 
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Thus, due to the fact that the proposed PGA with adaptive size of local sample facilitates the 
estimates vector recovery from local extremums of the goal function, it enables to 
significantly increase parameter estimate convergence speed in comparison with PGA with 
constant sample size at equal computational expenses. One more example of construction of 
PGA with adjustable local sample size is presented in work (Tashlinskii, 2003). 
Let us note that if the problem of IIGD parameter estimation is a part of the problem of 
identification with a decision rule based on goal function values, then in order to achieve the 
required confidence probability of identification it may require large sample size Iμ  that is 

not justified in the process of the estimates α̂  convergence. In this case it is expedient to use 
adaptive adjustment of sample size and we can choose Imax μ=μ  as its maximum. Then the 
attainment of maxμ  will simultaneously mean the identification problem solution. An 
example of such a problem can be search of a fragment location on the reference image 
where a criterion of correspondence is in excess of a certain correlation sample coefficient 
value between the fragment and the reference image. 

4. Structural optimization of pseudogradient algorithms  

In practical problems of IIGDs estimation by means of pseudogradient procedures the 
required accuracy of parameter α  estimates is not obtained in the whole domain αΩ  of 
possible values α , but only in a certain subdomain bounded by an operating range of the 
procedures. This leads to the necessity of decomposing αΩ  into N  subdomains ( )i

i
,0

)( α̂Ωα ,

Ni ,1=  corresponding to the operating range of the employed procedures where i,0α̂  – an 
initial approximation of the parameters for the procedure operating in the i -th subdomain. 
Let the procedure, operating in the subdomain which contains the sought vector vα  of 
parameters, be called a V-procedure (from veritas - true) and the corresponding subdomain 
– V-subdomain. Subdomains that do not include vα  are called P-subdomains (from pseudo 
– false) and the corresponding procedures – P-procedures. As the result of all these 
procedures operation N  vectors iα̂  of IIGD parameter estimates are formed and the 
problem of determination of a V-subdomain among these estimates with required accuracy 
where the goal function attains its extremum arises.  

4.1 The principle of pseudogradient procedure set control 

In the problems of IIGDs estimation the number of subdomains can run up to dozens of 
thousands. Thus, bringing all the procedures operating in subdomains to the number of 
iterations that ensures the necessary accuracy of estimation requires great computational 
expenses. At such an approach the choice of the V-subdomain requires additional 
calculations. To reduce computational expenses the following principle of structural 
optimization can be used (pseudogradient procedures set control). At each step of the 
algorithm the priority of the current iteration realization is given to the procedure, having 
the least value of a certain penalty function ψ  characterizing the level of the priority 
(Tashlinskii, 2006). Here, by «algorithm step» we imply a set of operations that includes 
performing of the current iteration by the procedure with the least penalty function, finding 
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a new value of the penalty function and obtaining a procedure with the least penalty 
function.
A characteristic property of such an approach is in the necessity to compare the «penalties» 
of the procedures which have performed different number of iterations. Studies have shown 
that when minimizing the goal function the following penalty functions satisfies such 
requirements

( )
=

−=ψ
t

k

i
k

i
t qq

1
inf

)()( , Ni ,1= ,

where )(i
kq  – goal function estimate at the k -th iteration; { })(

inf inf i
kqq ≤  – value which is less 

than the lower bound of the possible estimates set of the goal function. If the goal function is 
to be maximized then 

( )
=

−=ψ
t

k

i
k

i
t qq

1

)(
sup

)( , Ni ,1= ,

where { })(
sup sup i

kqq ≥ .
In the process of parameters estimates convergence to the optimal values the probabilistic 
properties of the goal function estimates are changing, which leads to the change of the 
probabilistic properties of the penalty function ψ . So when studying properties of ψ  it is 
necessary to know its probability distribution density ( )ψtw  at each iteration of estimation. 
At that, ( )ψtw  depends on the local sample tZ  i.e. a rate of the correspondence (similarity) 

of the sets { })1(
,

~
tjz  and { })2(

,tjz  involved in the local sample. It is expedient to use correlation 

sample coefficient ρ  as a value characterizing this correspondence. For isotropic images ρ
is a one-dimensional characteristic for any number of parameters to be estimated which 
simplifies calculations. Then for probability distributions of the penalty function increment 

ψΔ  at the t -th iteration we can write  

( ) ( ) ( )
−

ρρρψΔ=ψΔ
1

1
dwww tt , (20) 

where ( )ρψΔtw  – conditional density of increment; ( )ρw  – probability distribution density 
of the correlation coefficient. Let us note that for V-procedures ( )ρψΔtw  depends on the 

iteration number because ρ  increases as the estimates vector α̂  converges to the optimal 
values.
Without loss of generality, we can assume that ψ  takes only positive values. Then, for 
calculation of the distribution density of ψ  at the t -th iteration we can obtain the recurrent 
expression

( )ψtw ( ) ( ) ( )
∞

−
− ρψΔρρψΔψΔ−ψ=

0

1

1
1 dd| www ttt . (21) 

For the P-procedures ( )ρψΔtw  does not depend on the iteration number. Then, 

( ) ( ) ( )
∞

− ψΔψΔψΔ−ψ=ψ
0

1 dwww ttt , (22) 

where ( )ψΔw = ( )0=ρψΔtw .
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The expressions (20)–(22) enable to easily find the penalty function distribution density for 
the goal functions obtained in the second part. As an example, in Fig. 6 curves ( )ρψΔw  of 
the increment ψΔ  of the interframe difference mean square at ρ =0.4, 0.6, 0.8, 0.95 are 
presented. Other parameters of calculation were the following: the images ( )1X  and ( )2X  are 
Gaussian with correlation radius equal to 5 steps of the sample grid; the signal/noise ratio 

100=g ; the local sample size μ =4. In Fig. 7 the probability distribution densities of the 
interframe correlation sample coefficient for V-procedure ( ( )ψVtw ) and P-procedure 
( ( )ψPtw ) at the number of iterations 10, 40 and 80 and μ = 7 are presented. From the plot it 
is seen that the area of intersection between ( )ψVtw  and ( )ψPtw  decreases sharply as the 
number of iterations increases, which facilitates reliable separation of the procedures of P- 
and V-type.
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F
ig. 7. Penalty function distribution density at the interframe correlation sample coefficient

Fig. 6. Conditional distribution density of the penalty function increment 
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4.2 Testing of the hypothesis about goal function extremum absence in the parameter 
definition domain 

If the existence of V-subdomains in the IIGD definitional domain to be studied is not known 
a priori, then the problem of testing of the hypothesis that there is no V-subdomain among 
N  studied subdomains appears. Let us consider the possibility of construction of a simple 
criterion for testing of such a hypothesis. In doing so, we use the circumstance that when 
using the principle of the structural optimization, the basic feature of the V-subdomain is in 
the number of iterations performed by the procedure that operates in it. If among the 
procedures to be studied there is a procedure corresponding to the V-subdomain, then the 
number of iterations performed by it is, as a rule, more than the number of iterations 
performed by the procedures, which operate in P-subdomains. So the V-procedure attains 
the given number of iterations on average faster than P-procedure. In absence of a 
V-subdomain in the domain to be studied all the procedures carry out, on average, equal 
number of iterations and the leading procedure attains the threshold number of iterations 
for a larger number of algorithm steps. Thus, the total number M  of iterations performed 
by all procedures, the number of steps of the algorithm before the leading procedure attains 
a certain threshold value MT  can be chosen as a numerical value of the criterion of 
acceptance of the hypothesis about absence of the V-subdomains. In doing so, the statistical 
criterion of the hypothesis testing becomes very simple: if during cMM =  steps of the 
algorithm none of procedures has reached the MT -th iteration then there is no subdomain of 
V-type among the analyzed subdomains. The choice of values MT  and cM  enables to 
obtain the necessary error probabilities of the first and the second kind. 
The value MT  in a number of cases can be defined by the problem of the investigation 
following the hypothesis testing, for example, in the problem of fragment search on a large 
image – by the accuracy of its location parameters determining. In this case it is expedient to 
find the number of the algorithm steps 1cM  or 2cM  ensuring the required error probability 
of the first or the second kind basing on the preassigned value MT . Let us note that a certain 
value of the error probability of the second kind corresponds to each value 1cM  assuring a 
given error probability of the first kind and vice versa. We can specify only one probability 
whereas the second will be determined through the given probability value and the 
algorithm parameters. Simultaneous meeting of both the conditions (Here,, one of them will 
be limited) can be obtained by a choice of a value MT . If MT  and the algorithms parameters 
are given, then we can find the required number of steps 1cM  for the error probability of 
the first kind and 2cM  – for the error probability of the second kind and use the biggest of 
them in the algorithm as the threshold value. In the process of the algorithm realization, 
depending on the number of iterations Lt  performed by the leading procedure and the total 
number M  of algorithm steps, several various situations are possible that characterize 
veracity of the criterion of testing of the hypothesis about absence of a V-subdomain in the 
domain to be studied. Possible variants are presented in Tab. 
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Lt M Conclusion 

ML Tt < ∧< 1cMM 2cMM <
The error probabilities of the first and the second 

kind exceed the given values ( )1P  and ( )2P .

ML Tt < { }21 ,min cc MMM =

If 21 cc MM <  then the error probability of the first 

does not exceed the value ( )1P ;
if 21 cc MM > , then the error probability of the second 

does not exceed the value ( )2P .

ML Tt < { }21 ,max cc MMM =
The error probabilities of the first and the second 

kind do not exceed the given values ( )1P  and ( )2P .

ML Tt ≥ ∧< 1cMM 2cMM <
The error probabilities of the first kind exceeds the 

given values ( )1P  and ( )2P .

Table. Veracity of the criterion of testing of the hypothesis about absence of the V-
subdomains in the parameters domain to be studied 

Let us consider the veracity of the proposed criterion. First let us find the number of 
algorithm steps 2cM  guaranteeing the hypothesis testing with the specified error 

probability of the second kind )2(P . This error may appear when two conditions are 

simultaneously satisfied: 
– the V-procedure has not reached the MT -th iteration (we will consider the probability of 

this condition meeting to be )2(
VP ); 

– none of P-procedures has reached the MT -th iteration iteration (we will consider the 

probability of this condition meeting to be )2(
PP ). 

Then assuming )2(
VP  and )2(

PP  to be independent we obtain 

)2()2()2(
PV PPP = .

To find the probabilities )2(
VP  and )2(

PP  it is necessary to know the discrete distributions of 
the number of iterations for V- and P-procedures at the given number M  of algorithm 
steps. Let us denote the discrete distribution of the number of iterations for the V-procedure 
as VtP , MTt ,1= , where VtP  – probability of the event that the V-procedure has performed 
t  iterations at M  algorithm steps. Then, the probabilities of the event that the V-procedure 
will not reach the MT -th iteration are 

−

=
=

1

1

)2( MT

t
VtV PP .
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Accordingly, let us denote the discrete distribution of the number of iterations for the 
P-procedure as PtP , MTt ,1= , where PtP  – probability of the event that the P-procedure has 
performed t  iterations at M  algorithm steps. Here, the probability of the event that none of 
the P-procedures reaches the MT -th iteration is 

11

1

)2(
−−

=
=

NT

t
PtP

M
PP .

Let us note that VtP  and PtP  depend on the total number M  of algorithm steps accordingly 
various M  correspond to different distribution density )(ψ

MTw  of the penalty function  

If the number of algorithm steps M  and the probability )2(P are given, then we can find the 

corresponding number of iterations MT  from the following considerations. On average, the 

V-procedure fulfills 
−

=

1

1

MT

t
VtPt  iterations at M  algorithm steps and each of P-procedures - 

−

=

1

1

MT

t
PtPt  iterations. Then, we can obtain MT  from the condition 

( ) MPtNPt
MM T

t
Pt

T

t
Pt

−

=

−

=
=−+

1

1

1

1
1 .  (23) 

The condition (23) can be simplified if we take into account the fact that the V-procedure in 
comparison with the V-procedure guarantees significantly high convergence speed and will 
fulfill the number of iterations close to MT  at M  steps. Then, 

( ) MPtNT
MT

t
PtM

−

=
≈−+

1

1
1 .

Having determined MT  it is easy to find probabilities VtP  and PtP :

( ) ( )( ) −
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∞
−ψψ−ψ=
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i
PiPtTPt PdFwP

M
,

( ) ( )( ) −

=

∞
−ψψ−ψ=

1

10
1

t

i
ViVtTMVt PdFwP ,

where ( ) ( )
ψ

=ψ
0

dxxwF PtPt ( ) ( )
ψ

=ψ
0

dxxwF VtVt  – distribution functions of ψ  at the t -th

iteration for P- and V-procedures; ( )ψ
MTw  – penalty function distribution density at the 

MT -th iteration defined by the procedures of both V-type and P-type. At one V-procedure 

( ) ( ) ( )( ) ( ) ( )( )ψ−ψ+ψ−ψ=ψ −−
MMMMM VT

N
PT

N
PTVTT FwFww 11 )1(1 ,  (24) 

where ( )ψ− )1(N
PTM

w  – distribution density of the minimum of ( )1−N  penalty functions values 

of P-procedures at the MT -th iteration. 
Thus,
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Similarly we can find the error probability of the second type )1(P  (the probability of the 

event that at least one of N  P-procedures performs not less than MT  iterations at M
algorithm steps): 

NT

i
Pi

M
PP −=

−

=

1

1

)1( 1 . 

In this case V-procedures are absent so ( ) ( )ψ=ψ )(N
PTT MM

ww  – probability distribution of 

minimum of N  penalty function values of P-procedures. Then 
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4.3 The probability of goal function extremum subdomain erroneous choice  

One of the most important characteristics of the considered structural optimizations of 
PGAs is the probability erP  of the V-subdomain erroneous choice. First, let us consider the 
simplest case, when the domain αΩ  is decomposed into only two subdomains and one of 
them is of P-type and the other is of V-type. A subdomain of P-type will be chosen if the 
procedure operating in the P-subdomain is the first to reach the final T -th iteration, i.e. 
when the condition VPT ψ<ψ  is met, where PTψ  – penalty function value for the 
P-procedure at the T -th iteration, Vψ  – penalty function value for the V-procedure that can 
theoretically perform from 1 to ( )1−T  iterations. Let us assume we know a priori the value 

sψ  of the penalty function which is considered to be a criterion of the V-subdomain choice. 
Then, to have a error of the V-subdomain choice it is necessary the simultaneous performing 
of two events: the penalty function of the V-procedure has exceeded the value sψ  and of the 
P-procedure has not exceeded the value sψ . The probabilities of these events are 
determined by expressions 

( ) ( )
∞

ψ
ψ−=ψψ

s
VTVT Fw 1d  and ( ) ( )ψ=ψψ

ψ

PTPT Fw
s

d
0

,

 where ( ) ( )
ψ

=ψ
0

dxxwF VTVT , ( ) ( )
ψ

=ψ
0

dxxwF PTPT  – distribution function of ψ  at the T -th

iteration for procedures of V- and P-type correspondingly. Assuming the independence of 
the mentioned events the probability of the erroneous choice amounts to: 

( )( ) ( )ψψ−= PTVTer FFP 1 .

However, the value sψ  is unknown a priory. Then in presence of the V-subdomain in the 
parameter definition domain the conditional probability VerP |  of the choice of the 
P-procedure instead of the V-procedure is the probability of the event that PTVT ψ>ψ  at the 
T -th iteration: 
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( ) ( ) ( ) ( )( ) ψψ−ψ=ψψ=
∞∞ ψ

d1dd
00 0

| VTPTPTVTVer FwxxwwP .

Let us note that ( )ψVTw  and ( )ψPTw  depend on the distribution density ( )0α̂w  of the initial 

approximation 0α̂  of vector of the parameters to be estimated and in this sense they are 
considered to be estimated the conditional probabilities too. Below for definiteness, we 
assume that the initial approximation 0α̂  for the V-procedure gives the worst estimate in 
the operating range and the sought probability VerP |  corresponds to the upper bound of the 
error probability when choosing a V-subdomain. 
It is easy to show the probability VerP |  for the case of presence of one V-subdomain and 
( )1−N  P-subdomain in the parameter definitional domain is equal to 

( ) ( )( ) ψψ−−ψ=
∞ −

d11
0

1
|

N
PTVTVer FwP . (27) 

Here, the penalty function values of the procedures operating in P-subdomains are 
considered to be independent. Let us note that assumed constraint on independence of local 
samples from different P-procedures is not rigid, because in real images the samples in the 
domains corresponding to P-procedures are almost noncorrelated. 
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Fig. 8. The probability of omission of the sought fragment on the studied image  

As an example, in Fig 8. graphs of the probability VerP |  of omission of the sought fragment 
on the image to be studied are given. The IIGD parameters include parallel shift 

( )Thhh 21 ,=  of the sought and standard fragments and rotation angle ϕ  between them. The 
calculation was carried out for the case of usage of the pseudogradient (10) and diagonal 
gain matrix with diagonal elements ( )tht 1.011.0 +=λ  and ( )tt 01.011.0 +=λϕ  for h  and ϕ ,
respectively. The situations when image size required the partitioning of the parameter 
definitional domain αΩ  into 2, 50 and 1000 subdomains have been studied. The presented 
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plots correspond to the 400th iteration of the estimation. Here, the initial approximation 0ϕ
of the rotation angle varied from 25 to 0 degrees and the initial approximation 0h  of the 
parallel shift was fixed and equal to 5 sample grid steps. The results have been obtained for 
the image parameters corresponding to the previous examples. On the basis of the graphs it 
is possible to find, for example, the maximum rotation angle at which the required 
probability VerP |  is guaranteed. As 0ϕ  decreases the probability VerP |  increases too, for 

example, if o100 =ϕ  then at =N 50 the probability ≤VerP |
210−  and at =N 1000 – 

≤VerP |
310− .

Let us note that if the operating range of procedures exceeds the subdomains ( )i
i

0
)( α̂Ωα , then 

several V-procedures can correspond to one extremum of the goal function which increases 
the error probability VerP |  when doing V-subdomain search. It can be explained by the fact 
that in this situation the error condition at the V-subdomain choice is in a lesser than that of 
all V-procedures penalty function value of the P-procedure, having the largest number of 
iterations. To find the probability VerP |  in this case we can use the expression (27). However, 
in doing so, the probability distribution ( )ψVTw  at that has the sense of probability 
distribution of the penalty function minimum value among all V-procedures. 
It is also of interest also to study the situation when the goal function has several extremums 
as it is, for example, in the problem of search of several similar objects locations on an 
image. In this case derivation of the corresponding relations enabling to find the probability 
of omission of one or several subdomains of extremum position does not cause theoretical 
difficulties. 

4.4 Computational expense analysis 

Probability distributions of the number of iterations, performed by thr V-procedure and P-
procedures when attaining the threshold T -th iteration by one of the procedures, contain 
information necessary for analysis of average computational expenses. 
Assume it is known a priori that there is one subdomain of V-type among N  subdomains. 
Suppose also that a penalty function value of the leading procedure at the T -th iteration to 
be known and equaled to Tψ . Then, the conditional probability of the event that the value 

1Pψ  of the penalty function of the P-procedure exceeds Tψ  after first iteration is 

( ) ( ) ( )
∞

ψ
ψψ=ψ>ψ=ψ

T

dwPP PPTP 111 .

Here, on average ( ) ( )TPPN ψ− 11  procedures of ( )1−N  P-procedures perform only one 

iteration. The probability ( )TP tP ψ  of the event that the excess of the value Tψ  occurs 
directly after the t -th iteration is equal to 

( ) ( ) ( ) ( ) ( )T
t

i
PPttPPtTP iPdwdwdwtP

TTT

ψ−ψψ=ψψ−ψψ=ψ
−

=

∞

ψ

∞

ψ
−

∞

ψ

1

1
)1( . (27) 

Here, on average ( ) ( )TP tPN ψ− 1  procedures fulfill t  iterations. The relation (27) at 

1,1 −= Tt  corresponds to the conditional discrete distribution of the number of iterations 
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performed by the -procedure. We can also obtain a similar conditional probability 
distribution )( TV tP ψ , 1,1 −= Tt  for the V-procedure. The total average number of the 
procedures which have performed t  iteration constitutes 

( ) ( ) )(1)( TPTVm tPNtPtN ψ−+ψ= .

To find unconditional probability distribution { }tP , Tt ,1=  it is necessary to take into 
account the fact that a value Tψ  is a random one. Here, the V-procedure will be the leading 

one with the probability ( )TPTiP ψ>ψmin , 1,1 −= Ni , where PTiψmin  – minimum of 
penalty function values for P-procedures. If TVT ψ>ψ  then one of P-procedures will be the 
leading one with the probability ( ) ( )ψ−=ψ>ψ VTTVT FP 1 . Then, for the probability 
distribution ( )Tw ψ  of the minimum penalty function value Tψ  for all procedures 

( ) ( ) ( ) ( ) ( )TVTPTTPTiVTT PwPww ψ>ψψ+ψ>ψψ=ψ min . (28) 

On the assumption of noncorrelation of the local samples of P-procedures 

( ) ( )( ) 11min −ψ−=ψ>ψ N
PTTPTi FP .

Taking into account the relations (27)  (28) for the unconditional distribution { }tP  of the 
number of iterations we can write 

( ) ( ) ( )( ) ψ−ψ=
∞

ψ
−

∞
ddxxwxwwP tPPtTt )1(

0
, 1,1 −= Tt ,  (29) 

where

( ) ( ) ( )( ) ( ) ( )( )ψ−ψ+ψ−ψ=ψ −−
VT

N
PT

N
PTVTT FwFww 11 )1(1 ; (30) 

( )ψ− )1(N
PTw  – probability distribution of the penalty function minimum value for 

P-procedures at the T -th iteration.  
Let us note if we need calculation of all the components of the distribution (29) then to 
reduce computational expenses it is convenient to use the following recurrent relation 

( )( )
−

=

∞
−ψ−ψ=

1

10
1

t

i
PiPtTt PdFwP ,  (31) 

and for calculation of the probability tltP ,− of finding of the 

number of iterations in the range from ( )lt −  to t , 1,2 −= tl  the expression 

( ) ( ) ( )( ) ψ−ψ=
∞

ψ
−

∞

− ddxxwxwwP ltPPtTtlt )(
0

, .

In absence of the goal function extremum in the parameter definitional domain the 
expression (30) is simplified ( ) ( )ψ=ψ )(N

PTT ww .
Then for the distribution { }tP  we obtain 
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( )( )
−∞

−ψ−ψ=
1

0

)( 1
t

i
PiPt

N
PTt PdFwP , 1,1 −= Tt . (32) 

In Fig. 9 examples of the probability distribution of number of iterations for the problem of 
fragment search on the image for the situations of presence (Fig. 9,a) and absence (Fig. 9,b) 
of the sought fragment on the image are presented. The results have been obtained using the 
relations (31) and (32) for the case of attainment of the 100th iteration by the leading 
procedure. The fragment shift with reference to the subdomain center was equal to 5 sample 
grid steps, interframe correlation sample coefficient was used as the goal function, the 
pseudogradient (10) and diagonal gain matrix with elements ( )tht 04.0105.0 +=λ , 100=g
were applied in procedures. For the given example in absence of the sought fragment on the 
image (in absence of the goal function extremum in the parameter definitional domain) the 
total number of all the procedures is about 2.3 times as large. 
In the diagrams the experimental results obtained at the same parameters on the simulated 
Gaussian images, when the image domain was decomposed into 900 subdomains averaged 
on 200 realizations are also shown (with circles). A good correspondence of the theoretical 
and the experimental results can be seen. The performed simulation showed that at >T 200 
the distribution { }tP  is normalized which enables to use Gaussian approximation. 
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Fig. 9. Probability discrete distributions of the number of iterations 

When using structural optimization the computational expenses depend on both the type of 
pseudogradient procedures to be used and computational resources due to which the 
algorithm is realized. Let us consider only approximate relations primarily characterizing 
the total number of iterations performed by the procedures to attain the required result. 
Assume the time necessary to perform one step of the PGA to be the sum of the time Iτ ,
spent on performing of one iteration by the procedure, and the time ψτ  of finding the 
procedure that has the least value of the penalty function (for example, by arranging the 
penalty function values of all the procedures in ascending order and by choosing the 
procedure leading in this arranged sequence). 
The computational expenses )1(E  on testing of the hypothesis about absence of the 
V-subdomain at the given error )1(P  of the first type are the simplest to find. In this case the 
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threshold value of the statistical criterion of hypothesis acceptance is the number 1cM  of 
iterations performed by all procedures. Accordingly, 

( )ψτ+τ= IcME 1
)1( .

If the hypothesis is rejected then the number of iterations MT  is chosen as a rule basing on 
the required probability of V-subdomain omission. Then for the mathematical expectation of 
the total computational expenses TE  we can write 

( ) ( ) ,1
1

1
−+τ+τ=

−

=
ψ

T

t
tIT tPNTE

where tP  – probability of the event that the procedure has performed t  iterations;  
N  – total number of iterations. If all procedures have attained T  iterations then the 
computational expenses constitute at least 

NTE ITA τ= .

Accordingly the gain in computational expenses when using structural optimization in 
comparison with the case when all procedures are brought to the threshold number of 
iterations is determined by the relation 
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As an example, diagrams of the gain G  in computational expenses at =N 50, 200 and 1000 
obtained by means of the relation (33) for the problem of image fragment search are 

Fig. 10. Gain in computational expenses when using structural optimization 
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presented if Fig. 10. Here, we assumed that Iτ=τψ 1.0 . It is seen that the gain depends on 
the number N  of subdomains of the parameter definitional domain. Thus, at t =100 for 

=N 50 the gain 6.1=G , for =N 200 – =G 2.5, for =N 1000 – =G 5.3.
Structural optimization of PGAs was used, for example, to solve the problem of small 
fragments location search on large-sized images with reference to a given standard 
fragment. Here, the sought and the standard fragments had reciprocal rotation angle, 
different scale and amplitude distortions. In Fig. 11,a) an example of image of 3048× 1608 
elements and the sought fragment of 4848×  elements is given. The number of subdomains 
of image decomposition has constituted =N 31200 and computational expense reduction in 
comparison with the traditional approach – more than 15 times as large. In Fig. 11,b graphs 
of dependence of the probability erP  of fragment omission versus the number of iterations 
at the local sample size =μ 1 and 3 (under the condition that the sought fragment does exist 
on the image) are shown. 

a) 

t

erP

0
610−

410−

210−

0.1

1000 2000 3000

3=μ
1=μ

b)

Fig. 11. Image, fragment and error probability of fragment omission
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5. Conclusion 

The considered PGAs can be directly used in various applied problems of image processing. 
The algorithms of this class can be applied to image processing in the conditions of a priori 
uncertainty, they assume small computational expenses and do not require the preliminary 
estimation of the parameters of the image to be studied. The estimates formed through them 
are immune to impulse interference and converge to optimal values under rather weak 
conditions. At an unknown set of the parameters of geometrical deformations model PGAs 
enable to estimate shifts of each node of image sample grid. At a given IIGD model the 
processing of the image samples can be performed in an arbitrary order, for example, in 
order of scanning with decimation that is determined by the hardware speed, which 
facilitates obtaining a tradeoff between image entering rate and the speed of the available 
hardware. The mentioned properties make them attractive for usage in real time systems. 
Unfortunately a limited size of this manuscript does not make it possible to consider some 
important aspects of this lead of investigations, in particular, the analysis of probabilistic 
properties and computational expenses at PGAs structural optimization for the situation 
when the goal function has several extremums. Let us note two more such aspects for 
further study in the form of the problem definition.  
A disadvantage of the PGAs when performing the processing of real images is in the 
presence of local extremums of the goal function estimate characterizing the estimation 
quality which significantly reduces convergence speed or even may lead to its failure at 
some realizations in the process of estimate convergence. Besides, algorithms of this class 
have a comparably small range of operating.  
At that the estimate convergence character and computational expenses in many respects 
depend on the image samples local sample size used on various iterations of estimation. 
Thus the development and study of the methods of a priori and a posteriori optimization of 
size and plan of the sample used to obtain the goal function pseudogradient is considered to 
be a vital problem. One of the trends of a posteriori optimization is planned in the part 3.3 in 
this work. Of works concerned with a priori optimization we can highlight (Samojlov, 2006; 
Minkina et al., 2005). 
Modern information systems are characterized by increasing rate of the entering data. It 
gives rise to the vitality of pseudogradient procedures optimization on criteria of 
computational expense minimum and iterations number minimum at limitations on 
computational expenses. We should note that many scientists addressed to the study of 
precision potentiality of the pseudogradient procedures, in particular, (Albert & Gardner, 
1967; Benveniste et al., 1990). Asymptotic rate of convergence of the estimates to be formed 
has been profoundly studied in works (Chung, 1954; Sacks, 1958), in works (Goodwin & 
Payne, 1977; Soderstrom, 1981) and others the conditions of asymptotic normality of various 
pseudogradient procedures have been found, the works (Kushner & Clark, 1978; Tsypkin & 
Polyak, 1974) are devoted to estimation of asymptotic rate of convergence. However, for 
practical application of these procedures the investigation of their precision potentiality at a 
finite number of iterations is of significant importance. Unfortunately, at present this issue 
has been studied insufficiently. It is due to the fact that at a finite number of iterations an 
analysis of interframe deformations parameter estimates probabilistic properties is 
complicated by a large number of factors whose effect cannot be ignored. These are the 
nature of probability densities and autocorrelation functions of images and interfering noise, 
the kind of goal function determining the quality of estimation, the parameters of the 
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procedures and the number of iterations. Besides, when estimating the image parameters we 
have to deal with complex assemblage of hindering factors such as time and spatial 
inhomogeneity of characteristics of the desired signals and noise, inhomogeneity of 
sensitivity and the faults in sensors, pulse interference, etc. These above-mentioned factors 
are of random nature, so when describing real images both parametric and non-parametric a 
priori uncertainty nearly always takes place. One of the techniques of analysis of 
probabilistic characteristics of the estimates, formed by PGAs at a finite number of iterations 
has been proposed in works (Tashlinskii & Tikhonov, 2001; Tashlinskii, 2004) and was used 
when developing the chapters 3.1, 4.3 and 4.4 of the present manuscript. However, this lead 
requires further serious investigations. 
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1. Introduction     

Noise filtering of images is basically a smoothing process, and it is a subject that has been 
addressed for many years.  The idea of adaptive smoothing is being investigated a long time 
and many different approaches have been proposed over the years. 
Mastin (1985) reported superior performance of nonlinear such as medina filtering over 
linear techniques applied for adaptive image smoothing. Zucker et al. (1977) proposed to 
perform adaptive smoothing using weighted mask, which is computed by the difference 
between the value of the center point and its neighbors. Wang et al. (1981) applies a 
weighting scheme that averages values within a sliding window and changes the weights 
according to local differential. Instead of basic averaging Davis (Davis & Rozenfeld,  1978) 
performs iterated local noise cleaning by  K-Nearest Neighbour averaging. The main 
disadvantage of these methods is their difficulty to ensure convergence.  
Blake (Blake & Zisserman, 1987) proposed a smoothing process, which reconstructs a noisy 
signal in a piecewise continuous manner by employing weak continuity constraints. 
Although the convergence behavior was well studied, the computational complexity is 
extremely high. An anisotropic diffusion scheme was presented by Perona & Malik (1990). 
They suggested to employ a heat equation in anisotropic medium for edge enhancement. 
This is done by selectively smoothing regions with low gradient. Another approach, called 
Forward-and-Backward diffusion, is presented by Smolka et al. (2003) and emphasizes 
regions with high gradient which are not caused by noise. Almansa (Almansa & Lindeberg, 
2000) and Weickert (2001) have used diffusion techniques, which are based on a multi-scale 
analysis called scale-space representation, and applied an iterative process for local features 
estimation. Diffusion methods tend to distort sloping edges, while iterative methods slow 
down the filtering process in images with considerable amount of noise.  
Steerable filters are a class of filters, in which a filter of arbitrary orientation is synthesized 
as a linear combination of a set of “basis filters” (Freeman & Adelson, 1991).  Steerable filters 
are used in many image-processing tasks and specifically in image enhancement. Steerable-
scalable kernels roughly shaped like Gabor functions have the advantage that they can be 
specified and computed easily (Perona, 1992). However, those filters usually approximate 
the orientation with low resolution, since they are usually based on angular frequency 
sampling, and a huge number of basis filters are required in order to approximate 
orientation steerability with high resolution (Yu et al., 2001). Another kind of structure-
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adaptive anisotropic filtering technique has been proposed by Yang et al. (1996). Instead of 
using local gradients as a means of controlling the anisotropism of filters, it uses both a local 
intensity orientation and an anisotropic measure to control the shape of the filter. Although 
the filters proposed by Yang and Almansa are both structure-adaptive anisotropic filters, 
they are still significantly different mostly by the fact that Almansa’s filter is iterative while 
Yang’s is not. 
We propose to improve the structure-adaptive anisotropic filter (Yang et al., 1996) in the 
space domain. We suggest changing the filter’s kernel from a circle to an ellipse with the 
form, size and direction depending on image local anisotropic features. The essential idea of 
the improved filter is to apply a median filter for pixels bounded by an anisotropic elliptical 
kernel. We propose to use a non-linear filter kernel function rather than a linear, which 
produces less blurring during image filtering. The non-linear function is implemented in the 
form of the median filter. Moreover, instead of using Yang’s derivatives-based method for 
estimation the oriented pattern direction we have used Donahue’s (Donahue & Rokhlin, 
1993) method, which is more robust to noise. It uses a gradient type local operator and least 
squares minimization to control the noise.  
Fingerprints are today the biometric features most widely used for personal identification. 
The uniqueness of a fingerprint is determined by the local ridge characteristics and their 
relationships. Most of today’s automatic systems used for fingerprint comparison are based 
on minutiae matching, which represents local discontinuities in a fingerprint image. An 
automatic fingerprint image matching process, which enables a personal identification, 
strongly depends on comparison of the minutiae points of interest MPOI and their 
relationships. Reliable automatic extraction of these MPOI is a critical step in fingerprint 
classification. The performance of minutiae extraction algorithm relies heavily on the quality 
of the fingerprint images (Hong et al., 1996). The ridge structures in poor-quality fingerprint 
images are not always well defined and, hence, cannot be correctly detected. In order to 
ensure robust performance of minutiae extraction algorithm an enhancement algorithm that 
improves the clarity of the ridge structures is necessary (Hong et al., 1996). Enhancement of 
ridge structures essentially involves some filtering operation. 
We propose to modify the structure-adaptive anisotropic filter in the frequency domain by 
converting it from a lowpass filter into a band-pass one. In this work we show that the 
modified structure-adaptive anisotropic filter can be effectively applied to applications, such 
as fingerprint image enhancement, in which the oriented patterns in local neighborhood 
form a sinusoidal-shaped plane wave with a welldefined frequency and orientation i.e., 
ridges and valleys in a fingerprint image. Adjustment of the modified filter to fingerprints is 
made resulting in a unique structure-adaptive anisotropic filter. The performance of the 
unique structure-adaptive anisotropic filter is compared to that of some other filters in the 
framework of minutiae detection process.

2. The structure-adaptive anisotropic filter 

The structure-adaptive anisotropic filter, which has been proposed by Yang, uses a local 
intensity orientation and an anisotropic measure of level contours to control the shape and 
extent of the filter kernel. The filter kernel applied at each point 0x is defined as follows 
(Yang et al., 1996): 
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where n and ⊥n are mutually normal unit vectors, and n is parallel with the local oriented 

pattern direction. The shape of the kernel is controlled through )( 0
2
1 xσ  and )( 0
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satisfy the condition 1)( =xρ  when rx < , and r  is the maximum support radius. 
Direction estimation of an oriented pattern is based on the fact that the power spectrum of 
such a pattern lies along a line through the origin in the Fourier domain, and the direction of 
the line is perpendicular to the dominant spatial orientation of the pattern. The evaluation of 
the Fourier transform, however, is not necessary for actual calculations. Through a simple 
relationship between the local orientation direction and the matrix eigenvectors, the 
estimation of oriented pattern direction )(xθ  [the direction of vector n in (1)] can be made 
(Yang et al., 1996) as follows: 
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where Ω  is a local neighborhood ),( 21 xxx = .

The space constants )( 0
2
1 xσ  and )( 0

2
2 xσ  are controlled through the corner detector )( 0xc

and by the measurement of anisotropism )( 0xg  as follows (Yang et al., 1996): 
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where β  is a normalization factor that controls how faithfully the corners and junctions can 
be preserved during the filtering process.  
The anisotropic measure gives an indication of how strong a pattern is oriented and is 
defined as follows (Yang et al., 1996): 
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which can be calculated directly from the original data ),( 21 xxf  and its partial derivatives.  
The anisotropic measure can also provide a convenient way of finding corner and junction 
points within a given image. Yang suggests using both the measure of anisotropism and a 
gradient strength for an estimation of corner strength in a following way (Yang et al., 1996): 

( ) 2
)()(1)( xfxgxc ∇−=  (6) 

3. Improved structure-adaptive anisotropic filter 

In this section we propose some improvements to the structure-adaptive anisotropic filter 
(Yang et al., 1996) in the space domain. As previously mentioned the essential idea of the 
improvement is to apply the median filter for pixels bounded by an anisotropic elliptical 
kernel.  
The structure-adaptive anisotropic filter suffers from the following problems: corner 
strength measure )(xc  is highly influenced by noise. This results in a wrong estimation of 

space constants )( 0
2
1 xσ  and )( 0

2
2 xσ , which control the shape of the filter kernel. 

Derivatives-based approach for oriented pattern direction estimation fails to produce correct 
estimates for noisy images. The normalization factor β  controls how faithfully the corners 
and junctions can be preserved during the filtering process. Therefore, it is a critical factor 
and the choise of β  significantly affects the filter performance. Despite the fact that the 
structure-adaptive filter is directional and adjusts the shape of the kernel according to image 
anisotropic local features, the filter causes to unnecessary blurring in processed image due 
the linearity of its filtering function. The structure-adaptive anisotropic filter operates on a 
pixels neighborhood of a constant size and moreover, the size is not depending on local 
features of input image.  We suggest a solution to the above-mentioned problems and 
propose the improved structure-adaptive anisotropic filter, which combines non-linear 
filtering function, a more robust to noise technique for oriented pattern direction estimation 
and elliptical kernel with its form, size and direction depending on image local anisotropic 
features.
Instead of using a constant kernel the size must be changed to embody image local 
anisotropic features, namely, the anisotropic measure )(xg  and the corner strength )(xc .
This can be achieved by defining an elliptical kernel (Fig. 1) with its principal axis and 
direction changing according to image local anisotropic features. 
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Fig. 1. Controlling the shape and direction of an elliptic kernel through principal axes a, b 
and direction θ , which are controlled through image local anisotropic features.

The elliptical kernel’s main axis )( 0xa  must be minimal in regions where there is a high 
number of corners (edges, corners and etc) and maximal in regions with no corners (smooth 
places). The transition of )( 0xa  from smooth regions to regions that include corners should 
be performed in an exponential manner in order to prevent smoothing corners. The kernel’s 
shape must be circular in regions with low values of anisotropic measure ( 0→g ). In 
regions with high anisotropic measure ( 1→g ) the shape obtains a highly oriented elliptical 
form with its main axis runs in parallel to direction of local oriented pattern as can be seen 
in Fig. 2. To meet these requirements we propose to define the principal axes of the elliptical 
kernel as follows: 
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where r  is the maximal support radius, ε  is the minimal kernel width and β is a 
normalization factor that will be defined later. 
Comparing the behavior of Yang’s space parameter )( 01 xσ  (3) with the new proposed )( 0xa
parameter (7) emphasis the improvement of the new filter. Fig. 3 demonstrates the behavior 
of controlling the main axis of the filter kernel for both Yang’s and the proposed filter. This 
figure shows that adopting the proposed filter results with better behavior relative to the 
corner strength )(xc . For high values of corner strength the elliptical kernel results with 
smaller values for the main axis )( 0xa  in comparison to Yang’s filter, and only few pixels 
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are collected by the kernel. Therefore, it suggests that the improved filter better preserves 
corners and edges in the input image. 

Fig. 2. Controlling the shape and direction of the kernel in the space domain. 

Fig. 3.  Controlling the main axis of the filter kernel for Yang’s and the improved filter. 
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Correct estimation of oriented patterns direction is of high importance for effective 
performance of directional filters such as structure-adaptive anisotropic filter. The 
technique, which was proposed by Yang, is based on the fact that the power spectrum of an 
oriented pattern lies along a line through the origin in the Fourier domain, and the direction 
of the line is perpendicular to the dominant spatial orientation of the pattern. This technique 
fails to produce correct estimates for noisy images. The proposed filter adopts the method, 
proposed by Donahue & Rokhlin (1993), which uses a gradient-type operator and least-
squares minimization to control the noise. The estimation of the oriented pattern direction is 
extracted from each 22x  pixels neighborhood, which is then averaged over a local window 
of  5x5 pixel size.  
We propose to use a non-linear filter kernel function rather than a linear one that produces 
less blurring during image filtering. We have implemented the non-linear function in the 
form of a median filter that is applied within neighborhoods of pixels bounded by an 
elliptical kernel. The obtained is the improved structure-adaptive anisotropic filter, which is 
expressed mathematically as follows: 

{ })(),(),( 00 xxxxfmedianxxk −Ρ∈=  (9) 

where )( 0xx −Ρ  is the elliptical kernel centered at pixel 0x , oriented at angle θ  (defined by 
mutually normal unit vectors n  and ⊥n ) and is defined as follows:
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Substituting (7) and (8) into (10) and incorporating the obtained equation into (9) results in a 
final expression of improved structure-adaptive anisotropic filter: 
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Normalization factor β  used in the structure-adaptive anisotropic filter (Yang (1996)) is set 
to 75 percent of the maximal value of )(xc . Appropriate choice of β  involves a trade off 
between effective smoothing of areas with no corners (higher β ) and preserving most of the 
corners in the image (setting lower β ). Fig. 4  shows the PSNR of  a reconstructed image 
using different β  values. Fig. 4 suggests using higher values of β  to obtain higher PSNR 
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values for the reconstructed image. However, Fig. 5 which demonstrates the reconstructed 
image, shows that the image is over smoothed while using high value of β . Therefore, in 
order to preserve most of the corners and to effectively smooth areas without corners, we 
suggest setting β  to 90 percent of the maximal value of )(xc .  This compromise is 
empirically achieved by testing different values for β .
The performance of the improved structure-adaptive anisotropic filter is compared to the 
structure-adaptive anisotropic filter (Yang, 1996) and to the conventional median filter. The 
conventional median filter is carried out by numerical sorting of all pixel values in a 
surrounding neighborhood of 3x3 pixels, and then replacing the pixel being considered with 
the middle pixel value.  
The maximal support radius used for the structure-adaptive anisotropic filter is 3 pixels as 
suggested by Yang (1996), while the maximal support radius for the improved structure-
adaptive filter was empirically set to 2 pixels. The comparison is carried out on different 
kinds of images, which are commonly used for testing noise filtering algorithms (Fig.). All 
the test images are of resolution 79x79 dots per inch. The size is 182x144 for Bird image, 
95x95 for Girl and Area images, and 256x256 pixels for Fingerprint image. 

Fig. 4. PSNR of reconstructed Bird image using different β
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(a) (b) (c) (d) 
Fig. 5. Result of applying the improved filter with different β : (a) 50%, (b) 75%, (c) 90% and 
(d) 100% of the maximal value of )(xc .

(a) (b) (c) (d) 
Fig. 6.  Test images: (a) Bird ,(b) Girl (c) Area and (d) Fingerprint image 

The filters were tested on images contaminated by Gaussian noise and  ‘Salt and Pepper’ 
noise for different SNR (Signal to Noise) levels. Figure 7 demonstrates the Bird image 
contaminated with ‘Salt and Pepper’ noise and Gaussian noise. 

(a) (b) (c) 
Fig. 7. (a) original Bird image, contaminated with (b) ‘Salt and Pepper’ noise with 
SNR=21dB, and (c) Gaussian noise with SNR=20dB. 

The performance comparison is based on the SAD (Sum of Absolute Differences) criteria, 
which computes the sum of absolute differences between the original image and the 
reconstructed one. Figure 8 shows the filters performance results for Gaussian noise for 
different levels of SNR ranging from 15dB to 80dB. Figure 9 shows the performance results 
for ‘Salt and Pepper’ noise for different levels of SNR ranging from 16dB to 52dB.  Yang’s 
structure-adaptive anisotropic filter performs better than the median filter. The improved 
structure-adaptive anisotropic filter outperforms both median and Yang’s structure-
adaptive anisotropic filter over the whole range of SNR levels.  Figure 10 shows some 
examples of applying the different filters on images contaminated by Gaussian noise. It can 
be seen that the Yang’s structure-adaptive anisotropic filter reconstructs better than the 
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median filter, and the improved structure-adaptive anisotropic filter outperforms both 
filters in reconstructing from noisy image. 
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Fig. 8. Performance results of applying a conventional median filter, Yang’s structure-
adaptive anisotropic and the improved structure-adaptive anisotropic filters on the Bird 
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(a) (e) (i) (m) (q) 

(b) (f)               (j)                (n)               (r) 

(c) (g) (k) (o) (s) 

(d) (h) (l) (p) (t) 
Fig. 10. Applying the different filters on images contaminated by Gaussian noise: Original 
images (a)-(d), with Gaussian noise (SNR:10dB) (e) and (SNR:20dB) (f)-(h), images 
reconstructed by the median filter(i)-(l), by the structure-adaptive anisotropic filter(m)-(p)  
and by the proposed improved structure-adaptive anisotropic filter (q)-(t). 

4. The modified structure-adaptive anisotropic filter 

In this section we propose some modifications to the structure-adaptive anisotropic filter 
(Yang et al., 1996) in the frequency domain and present the modified structure-adaptive 
anisotropic filter.  
The structure-adaptive filter has the low-pass filter characteristics. We propose to convert it 
to the band-pass filter by multiplying its kernel by a scaling factor S and adding an offsetV .
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The obtained is the modified structure-adaptive anisotropic filter, which has the following 
general form: 
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where V and S are the parameters, which must be adjusted to the specific application. 
Applying a 2D Fourier transform on (12) we obtain the filter’s frequency response: 
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where θ  is the local pattern orientation, r  is the kernel’s maximal support radius and ∗  is 
a convolution operator. 
The general form of the modified structure-adaptive anisotropic filter can obtain different 
frequency response behavior types (low-pass and band-pass) by matching the values of V 
and S (Figure 11). The structure-adaptive filter (Yang et al., 1996) can be seen as a special 
case of the modified structure-adaptive anisotropic filter and it is obtained by setting the 
values to S=1 and V=0. 
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Fig. 11. Example of different frequency behavior types of the modified structure-adaptive 
anisotropic filter :(a) low-pass filter type (V=1 S=10) and  (b) band-pass filter type (V=-2 
S=10)

Band-pass form of the modified structure-adaptive anisotropic filter is effective in filtering 
images in which oriented patterns in a local neighborhood form a sinusoidal-shaped plane 
wave with a well-defined frequency and orientation (i.e. fingerprint images including ridges 
and valleys). 
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5. The unique structure-adaptive anisotropic 

In this Section the application of the modified structure-adaptive anisotropic filter to 
fingerprint image enhancement is made and the unique structure-adaptive anisotropic filter 
is proposed.  Fingerprints are today the biometric features most widely used for personal 
identification. Fingerprint recognition is one of the basic tasks of the Integrated Automated 
Fingerprint Identification Service (IAFIS) of the most famous police agencies (Lee & 
Gaensslen, 1991).  A fingerprint pattern is characterized by a set of ridgelines that often flow 
parallel, but intersect and terminate at some points.  The uniqueness of a fingerprint is 
determined by the local ridge characteristics and their relationships (Hong et al., 1998), (Lee 
& Gaensslen, 1991). Most automatic systems for fingerprint comparison are based on 
minutiae matching (Hollingum, 1992). Minutiae characteristics are local discontinuities in 
the fingerprint pattern and represent the two most prominent local ridge characteristics: 
terminations and bifurcations A ridge termination is defined as the point where a ridge ends 
abruptly, while ridge bifurcation is defined as the point where a ridge forks or diverges into 
branch ridges (Figure 12). A typical fingerprint image contains about 40-100 minutiae (Hong 
et al., 1998).

Fig. 12. Examples of minutiae (ridge ending and bifurcation) in a fingerprint image  

An automatic fingerprint image matching process, which enables a personal identification, 
strongly depends on comparison of the Minutiae Points of Interest (MPOI) and their 
relationships. Reliable automatic extraction of these MPOI is a critical step in fingerprint 
classification. 
The performance of minutiae extraction algorithm relies heavily on the quality of the 
fingerprint images (Hong et al., 1998). The ridge structures in poor-quality fingerprint 
images are not always well defined and, hence, cannot be correctly detected. This might 
result in the creation of spurious minutiae and the ignoring of genuine minutiae. Therefore 
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large errors in minutiae localization may be introduced (Hong et al., 1998). Examples of 
poor-quality fingerprint images are shown in Figure 13. In order to ensure robust 
performance of minutiae extraction algorithm an enhancement algorithm that improves the 
clarity of the ridge structures is necessary (Hong et al., 1998), (Hong et al., 1996). 
Most of the fingerprint image enhancement techniques, proposed in the literature, are 
applied to binary images, while some others operate directly on gray-scale images (Lee & 
Gaensslen, 1991), (O’Gorman, L. & Nickerson, 1989), (Sherlock et al., 1994). The binarization 
process may cause loss of information about true ridge structure and it has inherent 
limitations (Hong et al., 1998).  

(a) (b) (c) (d) 
Fig. 13. Examples of poor quality fingerprint images due to: noisy acquisition device (a), (b) 
and variation in impression conditions (c), (d), resulting in corrupted ridgelines 

Ko (2002) and Sherlock et al. (1994) suggested gray-scale image enhancement techniques, 
which are applied in the frequency domain, while Hong et al. (1998) and Huvanandana et 
al. (2003) employed their techniques directly in the space domain. Cheng et al. (2002) applies 
scale space theory to fingerprints enhancement by filtering the image in an iterative manner 
using both local and global image charackteristics. Almansa & Lindeberg (2000) propose a 
diffusion technique, which estimates iteratively local features and perfoms directional 
filtering in regions with well-defined orientation, while in areas without a dominant 
orientation it applies isotropic filtering. Wang & Wang (2004) propose similar technique, 
which applies isotropic filtering in the frequency domain at regions without clear dominant 
orientation.
Different gray-scale fingerprint images enhancement techniques assume that the local ridge 
frequency and orientation can be reliably estimated. However, this assumption is not valid 
for poor-quality fingerprint images. Although, other decomposition methods (Hong et al., 
1998), (Hong et al., 1996) which apply a bank of Gabor filters to the input fingerprint images, 
can obtain reliable orientation estimation even for corrupted images, they are 
computationally expensive. 
Hong et al. (1998) proposed a fast enhancement algorithm, which can adaptively improve 
the clarity of ridge and valley structures of input fingerprint images based on the estimated 
local ridge orientation and frequency.  
We present some improvement to the Hong (Hong et al., 1998) method by using the 
modified structure-adaptive anisotropic filter, adapted to fingerprint images. Instead of 
using both local ridge orientation and local frequency information, only the orientation 
information is used in our approach. Our proposed unique structure-adaptive anisotropic 
filter, which eliminates the need to estimate local frequency information, can replace the 
Gabor filter. The proposed enhancement algorithm with the unique filter is faster and 
efficient as well. 
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We have adjusted the modified structure-adaptive anisotropic filter specifically to fit 
fingerprint images, and empirically set the filter parameters to 2−=V  and 10=S . The filter 
frequency response has bandpass filter characteristics. The proposed filter was found to be 
effective in fingerprint image enhancement, while preserving the local ridge frequency of 
the fingerprint image (see Figure 15). The frequency bands transferred by the filter include 
almost all typical local ridge frequencies that lie within a certain range for a given image 
resolution (Hong et al., 1998).  
The space constants )( 0

2
1 xσ  and )( 0

2
2 xσ of the structure-adaptive anisotropic filter kernel 

are controlled through both the corner detector )(xc  and by the measurement of 
anisotropism )(xg  as defined by (5) and (6). These equations include gradient estimation via 
calculations of first order derivatives of the input image. Problems may arise if the input 
data is noisy. This is because taking derivatives is a highpass filtering process, which 
amplifies the effect of noise. The space constants have a strong influence on filter 
performance on fingerprint images, and since they are highly affected by noise, we suggest 
setting them to constants 4)( 0

2
1 =xσ  and 2)( 0

2
2 =xσ . This setting produced a filter in the 

form of a Gaussian-shaped kernel with a double ratio between the axis running in the main 
direction and the axis perpendicular to it. By setting the space constants to constant values 
we obtain a filter that is more robust to noise. However, the filter is optimal only for a 
fingerprint set, which was used in our experiments. Therefore in our future work we will 
develop more robust to noise local anisotropic measurements that will control the space 
constants. Figure 14 shows a comparison of impulse and frequency responses between the 
structure-adaptive anisotropic filter (Yang et al., 1996) and the unique filter ( 2−=V , 10=S ).
It can be seen that both filters have directional Gaussian-like shaped kernels in a space 
domain. However, they are different in the frequency domain: the Yang’s anisotropic filter 
shows Low-Pass (one peak in the center) filter characteristics, while the unique anisotropic 
filter expresses Band-Pass filter characteristics (two peaks symmetrically located around the 
center).
The unique filter has one undesired property: its value at infinity is unequal to zero. 
Therefore its response depends on the chosen support size of the filter. However, the unique 
filter is adjusted to transfer all typical local ridge frequencies, which lie within a certain 
range for a given image resolution (Hong et al., 1998), and it works well on all set of 
fingerprint images with given resolution, as demonstrated in the next Section. 
The performance of the unique structure-adaptive anisotropic filter is studied in the context 
of fingerprint image enhancement algorithm simulated by Hong (1998). We compare the 
applying of the structure-adaptive anisotropic filter J (Yang, 1996), the unique structure-
adaptive anisotropic filter I, Gabor-based filter G (Hong, 1998) and the modified Gabor-
based filter (Greenberg et al., 2000 & Greenberg et al., 2002) H, on the same set of fingerprint 
images. We use performance results of the structure-adaptive anisotropic filter I and Gabor 
filters G, H taken from a different comparative study (Greenberg et al., 2000 & Greenberg et 
al., 2002) conducted on direct gray-scale fingerprint enhancement methods. In this work we 
extend this comparative study with performance results of the unique structure-adaptive 
anisotropic filter J applied on the same fingerprint images set as in (Greenberg et al., 2000 & 
Greenberg et al., 2002). The sample set is composed of 10 fingerprints taken from NIST, FBI 
sample and using an optoelectronic device. The gradient used by compared filtering 
algorithms was obtained using first order approximation. 
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Figure 15 shows a comparison of the enhancement results obtained using different filters, 
for poor-quality fingerprint images, which contain regions that do not form a well-defined 
local ridge frequency. These regions are mostly encountered in the neighbourhood of 
fingerprint image singular points: core and delta (Lee & Gaensslen, 1991).  Both the 
structure-adaptive and the unique structure-adaptive anisotropic filters outperform the 
Gabor-based filters for those regions, which contain singular points. 
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Fig. 14. Comparison of impulse and frequency response between the structure-adaptive 
anisotropic filter and the proposed unique structure-adaptive anisotropic filter ( 2−=V  , 

10=S ). Both filters are 11x11 pixels kernel size, and have a directional Gaussian-like shaped 
kernel in a space domain (a) and (b). However they are different in the frequency domain: 
(c) the structure-adaptive anisotropic filter shows lowpass filter characteristics, while (d) the 
unique filter expresses bandpass filter characteristics (two peaks around the center). 
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(a) (b) (c) (d) (e) 
Fig. 15. Example of enhancement results of fingerprint image region with a singular point 
(core). Original image (a); enhanced image after applying the Gabor-based filter (b), the 
modified Gabor-based filter(c), the structure-adaptive anisotropic filter (d) and the proposed 
unique structure-adaptive anisotropic filter (e) 

Figure 16 compares the success rate obtained by applying gray-scale filtering technique 
(Greenberg et al., 2000 & Greenberg et al., 2002) using the four filters (G, H, I, J) on the same 
fingerprint image set. The average error percentage is expressed in terms of false (minutiae 
that was found in the region not containing true minutiae), dropped (minutiae that was not 
found in the neighborhood of true minutiae) and exchanged minutiae (minutiae differing 
from the true minutiae type in the same image region). The average error percentage 
presented by our approach I (unique structure-adaptive anisotropic filter), is comparable to 
the errors produced by approach H (modified Gabor-based filter). Both I filter and H filter 
create less errors than the G (Gabor-based) and I (structure-adaptive anisotropic) filters. 
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Fig. 16. Comparison of the filters performance: G-Gabor-based filter,  H-modified Gabor–
based filter, I-unique proposed structure-adaptive anisotropic filter and J-structure-adaptive 
anisotropic filter. 
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Figure 17 demonstrates the enhancement results of applying the structure-adaptive 
anisotropic (Yang, 1996), the unique structure-adaptive anisotropic and the modified Gabor-
based (Greenberg et al., 2000 & Greenberg et al., 2002) filters to some fingerprint images 
from the sample set.  

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) (n) (o) (p) 
Fig. 17. Enhancement results of applying different filters to fingerprint images from the 
same sample set: (a)-(d) original fingerprint images and after enhancement using (e)-(h) the 
structure-adaptive anisotropic filter, (i)-(l) the proposed unique structure-adaptive 
anisotropic filter and (m)-(p) the improved Gabor-based filter, accordingly. 
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Table 1 shows the wall time for different stages of the Gabor-based enhancement algorithm 
simulated by Hong (1998) and the total time on a Pentium 200MHz PC. The enhancement 
algorithm based on the anisotropic filter does not require the estimation of the local ridge 
frequency information. Therefore it saves about 4% of the processing effort compared to the 
Gabor-based enhancement algorithm. 

Normalization 
(Seconds)

Orientation
(Seconds)

Frequency 
(Seconds)

Region
Mask

(Seconds)

Filtering 
(Seconds)

Total
(Seconds)

0.11 0.14 0.09 0.07 2.08 2.49 

Table 1. The wall time of the Gabor-based enhancement algorithm on a Pentium 200MHZ 
PC (taken from (Hong, 1998), Table 2) 
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1. Introduction 

Since the introduction of the matched spatial filter (MSF) (VanderLugt, 1964), many 
different types of filters for pattern recognition based on correlation have been proposed.  
One of the reasons of such growing interest to design effective methods of pattern 
recognition stems from the need to deal with more complex images in various applications 
of automated image processing and from the need to process large images in real time. For 
some of the more critical applications, optical or hybrid optodigital techniques allow faster 
processing of images. This is why our approach in this area is based on correlation filters, 
which possess good mathematical fundamentals and can be effectively implemented 
digitally or optodigitally (Moreno et al., 1998).  
In pattern recognition two essentially different types of tasks are distinguished: detection of 
a target and estimation of its exact position. When correlation filters are used, these 
problems can be solved in two steps. First, the detection is carried out by searching 
correlation peaks in the filter output, and then coordinates of these peaks are taken as 
position estimations. The quality of both procedures is limited by the presence of noise in an 
observed scene. The detection capabilities of correlation filters can be quantitatively 
expressed in terms of probability of detection errors (false alarms), signal-to-noise ratio, 
discrimination capability, peak-to-output energy ratio, etc. (Vijaya Kumar & Hassebrook, 
1990). Some of the measures can be essentially improved using an adaptive approach to the 
filter design. According to this concept, we are interested in a filter with good performance 
characteristics for a given observed scene, i.e., with a fixed set of patterns or a fixed 
background to be rejected, rather than in a filter with average performance parameters over 
an ensemble of images. After the detection task has been solved we still faced with small 
errors of target position estimations due to distortion of the object by noise. The coordinate 
estimations lie in the vicinity of their actual values. So the target location can be 
characterized only by means of the variance of measurement errors along coordinates 
(Kober & Campos, 1996). 
One of the most important performance criteria in pattern recognition is the discrimination 
capability (DC), or how well a filter detects and discriminates different classes of objects. A 
correlation filter with a minimum probability of anomalous detection errors (false alarms) 
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referred to as the optimal filter (OF) was suggested (Yaroslavsky, 1993). An important 
feature of the OF is its scene-adaptivity in applications to pattern recognition or target 
detection because its frequency response takes into account the power spectrum of wrong 
objects in the observed scene or the background to be rejected. The disadvantage of the OF 
in optical implementation is its extremely low light efficiency. A filter with maximum light 
efficiency is the phase-only filter (POF) (Horner & Gianino, 1984). The drawback of the POF 
is its poor discrimination capability for a low-contrast target embedded into a complicated 
background scene. An approximation of the OF by means of phase-only filters with a 
quantization was made (Kober et al., 1994). There, the approximate filters with high light 
efficiency and discrimination capability close to that of the OF were suggested. When the 
object to be recognized is in the presence of disjoint background noise, the design of the 
optimal filter was also obtained (Javidi & Wang, 1994).  
It is commonly known that the MSF is very sensitive to small distortions of the object caused 
by variations in scale, rotation, or point of view. One of the first attempts to overcome the 
problem of distortion in pattern recognition was the introduction of synthetic discriminant 
functions (SDFs), (Hester & Casasent, 1980; Casasent, 1984). The SDF filters use a set of 
training images to synthesize a template that yields a prespecified central correlation output 
in the response to training images. The main shortcoming of the SDF filters is appearance of 
sidelobes owing to the lack of control over the whole correlation plane. As a result, the SDF 
filters often possess a low discrimination capability. A partial solution of this problem was 
suggested (Mahalanobis et al., 1987). They proposed to control over the whole correlation 
plane by producing sharp correlation peaks for easy detection of the target as well as by 
minimizing the average correlation energy to suppress the presence of extraneous 
correlation peaks. However, these filters are not tolerant to input noise. They perform 
control over false alarms by an indirect way, and, finally, they are more sensitive to 
interclass variations than other composite filters (Billet & Singher, 2002). 
This chapter treats the problems of real-time pattern recognition exploiting adaptive 
distortion-invariant correlation filters (González-Fraga et al., 2006; Diaz-Ramirez et al., 2006; 
Kober et al., 2006). The distinctive feature of the proposed methods is the use of an adaptive 
approach to the filters design. Specifically, we shall look at two problems: detection of 
known objects possessing small geometric distortions and corrupted with additive sensor’s 
noise, and implementation of the designed filters in an optodigital setup.  
The first problem is to decide on presence or absence of a distorted object. New adaptive 
composite filters for reliable recognition of the object in a cluttered background are 
presented. The information about an object to be recognized, false objects, and a known 
background to be rejected is utilized in iterative training procedure to design a correlation 
filter with a given value of discrimination capability. The synthesis of the adaptive filters 
also takes into account additive sensor’s noise by training with a noise realization. 
Therefore, the filters may possess a good robustness to the noise.  
The second problem concerns real-time implementation of the adaptive correlation filters. 
For some of the more critical applications, optical or hybrid optodigital techniques allow 
faster processing of images. The advantage of optical systems over computers lies in 
inherent ability of optical systems to process data in a parallel way. For instance the classical 
optical correlator allows to perform fully parallel matched filtering over an input scene 
containing multiple patterns. Recent progress in optical spatial light modulators gives new 
opportunities for creation of optodigital systems. Such modulators can be addressed 
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electronically that allows rapidly and flexibly change the object or the filter for real-time 
applications. We implemented the adaptive filters in a hybrid system using the joint 
transform correlator scheme. The hybrid system additionally takes into account real 
characteristics of used optoelectronics devices. Computer simulation and experimental 
results are provided and disscussed.  

2. Adaptive Digital Systems  

2.1. Conventional correlation filters  

Consider the problem of detecting the presence and location of a known distorted target in 
an observed scene using the correlation operation. The correlation can be effectively 
implemented in a computer with the help of the fast Fourier transform. When the 
correlation output is obtained then coordinates of the correlation peaks can be taken as 
position estimations of a target. 
A basic correlation filter is the MSF whose impulse response is the flipped version of a 
reference object. This filter is optimal with respect to the signal-to-noise ratio at the filter 
output when an input signal is on presence of additive white noise. A drawback of the MSF 
in optical implementation is its low light efficiency. A filter with maximum light efficiency is 
the POF. The transfer function of a basic POF (Horner & Gianino, 1984) is given by 
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),(),(

* vuTifvui
vuT
vuTvuH t
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where T(u,v), t(u,v) are the Fourier transform and the phase distribution of the target, 
respectively. The asterisk denotes complex conjugate. 
The transfer function the OF can be approximated in the Fourier domain as  
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where S(u,v) is the Fourier transform of the input scene (Yaroslavsky, 1993).  
The performance of conventional correlation filters degrades rapidly with image distortions. 
An attractive approach to distortion-invariant pattern recognition is based on SDF filters. 
These filters (called composite filters) use a set of training images (patterns), which are 
sufficiently descriptive and representative for expected distortions. A basic SDF filter is a 
linear combination of MSFs for different patterns (Casasent, 1984). The coefficients of the 
linear combination are chosen to satisfy a set of constraints on the filter output. Two 
different recognition problems can be solved with the composite filters.  

Intraclass Recognition Problem 
Let {ti(x,y); i=1,2,…,N} be a set of (linearly independent) training images each with d pixels. 
The SDF filter function h(x,y) in the spatial domain can be expressed as a linear combination 
of a set of reference images, i.e., 

1

( , ) ( , )

N

i i
i

h x y a t x y
=

= , (3) 
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where {ai; i=1,2,…,N} are weighting coefficients, and they are chosen to satisfy the following 
conditions: 

i it h q⊗ = . (4) 

Here the symbol ⊗  denotes the correlation, and {qi; i=1,2,…,N} are prespecified values in 
the correlation output at the origin for each training image.  
Let R denote a matrix with N columns and d rows (number of pixels in each training image), 
where its ith column is given by the vector version of ti(x,y). Let a and u represent column 
vectors of {ai} and {qi}, respectively. We can rewrite Eqs. (3) and (4) in matrix-vector notation 
as follows: 

=h Ra , (5) 
+=q R h , (6) 

where superscript + means conjugate transpose.  
By substituting Eq. (5) into Eq. (6) we obtain 

+=q (R R)a . (7) 

The (i,j)th element of the matrix Q=(R+R) is the value at the origin of the cross-correlation 
between the training images ti(x,y) and tj(x,y). If the matrix Q is nonsingular, the solution of 
the equation system is given by 

+ −= 1a (R R) q , (8) 

and the filter vector is 

SDF
+ −= 1

h R(R R) q . (9) 

The SDF filters with equal output correlation peaks can be used for intraclass distortion-
invariant pattern recognition, i.e., detection of distorted patterns belonging to the true-class 
of objects. This can be done by setting all elements of q to unity, i.e., 

[1 1 ... 1]T=q . (10) 

Multiclass Recognition Problem 
Assume that there are distorted versions of a reference object and various classes of objects 
to be rejected. For simplicity, we consider two-class recognition problem. Thus, we design a 
correlation filter to recognize training images from one class (called true class) and to reject 
training images from another class (called false class). Suppose that there are M training 
images from the false class {pi(x,y); i=1,2,…,M}. According to the SDF approach, the 
composite image h(x,y) is a linear combination of all training images {t1(x,y),…, 
tN(x,y),p1(x,y),…, pM(x,y)}. The both intraclass recognition and interclass discrimination  
problems can be solved by means of SDF filters. We can set the filter output {qi=1; 
i=1,2,…,N} for the true class objects and {qi=0, i=N+1,N+2,…,N+M} for the false class objects, 
i.e., 

[1 1 ... 1 0 0 ... 0]T=q . (11) 
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Using the filter given in Eq. (9), we expect that the central correlation peak will be close to 
unity for the true class objects and it will be close to zero for the false class objects. 
Obviously, the preceding approach can be easily extended to any number of classes to be 
discriminated. Note that this simple procedure is the lack of control over the full correlation 
output because we are able to control only the correlation output at the location of cross-
correlation peaks. Therefore, other sidelobes (false peaks) may appear everywhere on the 
correlation plane. To reduce the sidelobes, a composite correlation filter (called MACE filter) 
with a sharp correlation peak at the output was proposed (Mahalanobis et al., 1987). The 
MACE filter is synthesized in the frequency domain as follows: 

MACE
− + − −= 1 1 1

H D P(P D P) q , (12) 

where D is a diagonal matrix, P is a matrix with N columns and d rows, where its ith
column is given by the vector version of Ti(u,v) (Fourier transform of ti(x,y)). The entries 
along the diagonal are obtained by averaging the power spectrum of each image (|Ti(u,v)|2;
i=1,2,…,N) and then scanning the average from left to right, and from top to bottom. 

2.2. Design of Adaptive Correlation Filters 

To achieve good recognition of the target it is necessary to reduce correlation function levels 
at all false peaks except at the origin of the correlation plane, where the constraint on the 
peak value must be met. For a given object to be recognized, false objects, and a background 
to be rejected, it can be done with the help of an iterative algorithm. At each iteration, the 
algorithm suppresses the highest sidelobe peak and therefore monotonically increases the 
value of discrimination capability until a prespecified value will be reached. The 
discrimination capability is formally defined as ability of a filter to distinguish a target 
among other different objects. If a target is embedded into a background that contains false 
objects, then the DC can be expressed as follows: 

2
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)0,0(

)0,0(
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T

B

C

C
DC −= , (13) 

where CB is the maximum in the correlation plane over the background area to be rejected, 
and CT is the maximum in the correlation plane over the area of target position. The area of 
target position is determined in the close vicinity of the actual target location. The 
background area is complementary to the area of target position. Negative values of the DC 
indicate that a tested filter fails to recognize the target. 
We are interested in a correlation filter that identifies a target with a high discrimination 
capability in cluttered and noisy input scenes. Actually in this case, conventional correlation 
filters yield a poor performance (Javidi & Wang, 1992). With the help of adaptive composite 
filters, a given value of the DC can be achieved. The algorithm of the filter design requires 
knowledge of the background image. Thus, we are looking for the target with unknown 
location in the known input scene background. The background can be described either 
stochastically, for instance, it can be considered as a realization of a stochastic process, or 
deterministically, which can be a picture. The background can also contain false objects with 
unknown locations. The first step is to carry out correlation between the background and a 
basic SDF filter, which is initially trained only with the target. Next, the maximum of the 
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filter output is set as the origin, and around the origin we form a new object to be rejected 
from the background. This object has the region of support equals to that of the target. The 
created object is added to the false class of objects. Now, two-class recognition problem 
described in Section 2.1 is utilized to design a new SDF filter; that is, the true class contains 
only the target and the false class consists of the false class objects. The described iterative 
procedure is repeated till a given value of the DC is obtained. Finally, note that if other 
objects to be rejected are known, they can be directly included into the false class and used 
for the design of adaptive SDF (ASDF) filter. A block-diagram of the procedure is shown in 
Fig. 1.  
The proposed algorithm consists of the following steps: 

1. Design ASDF filter as a conventional SDF filter trained only with the target. 
2. Carry out correlation between the background and the ASDF filter. 
3. Calculate the DC using Eg. (13). 
4. If the value of the DC is greater or equal to the desired value, then the filter design 

procedure is finished, else go to the next step.  
5. Create a new object to be rejected from the background. The origin of the object is 

at the highest sidelobe position in the correlation plane. The object is included into 
the false class of objects.  

6. Design a new ASDF filter utilizing two-class recognition problem. The true class 
contains only the target and the false class consists of the false class objects. Go to 
step 2. 

Correlation process. 

Calculation of DC.

Adaptive SDF filter

design (ASDF)

Input

Target

Make training image

from background

DC >= desired

DC ?
no

Exit

Input

Background

Fig. 1. Block-diagram of the iterative algorithm to design the adaptive SDF filter. 
At each iteration, the algorithm chooses among all sidelobes such a peak to be suppressed in 
next step to ensure a monotonically increasing behavior of the DC versus the iteration index 
during the filter design. As a result of the procedure, the adaptive composite filter is 
synthesized. The performance of the filter in recognition process is expected to be close to 
that of in the synthesis process. Extensive computer simulations showed that for 
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complicated input scenes with real and stochastic cluttered backgrounds the number of 
iterations needed to achieve the value of the DC higher than 0.9 is about 10. 

2.3. Computer Simulations 

In this section, computer simulation results obtained with adaptive SDF filters are 
presented. The results are compared with those of the POF, the OF, and the MACE filters. 
The target is the airplane shown in Fig. 2(a).  

                
(a)     (b) 

Fig. 2. Test images: (a) target, (b) real background. 

The size of all images used in the experiments is 256×256 pixels. The signal range is 0 to 255. 
The mean value and the standard deviation over the target area are 130 and 42, respectively. 
The size of the target is about 69×26 pixels. In the first experiment, we use a real spatially 
inhomogeneous background shown in Fig. 2(b). The mean value and the standard deviation 
of the background are 104 and 40, respectively.  
Figure 3 shows the performance of the adaptive filter in the filter design process in terms of 
the DC versus the iteration index.  
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Fig. 3. Performance of the adaptive SDF filter in the design process. 
After the first iteration the value of the DC is negative. After 20 iterations, the obtained 
ASDF filter yields DC=0.982. This means that a high level of control over the correlation 
plane for an input scene constructed from the background and the target can be achieved. 
Next, we test the recognition performance with various correlation filters when the target is 
imbedded into the background at arbitrary coordinates. We carried out 30 statistical trails of 
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the experiment for different positions of the target. With 95% confidence the performance of 
the ASDF, the POF, and the OF with respect to the DC are given in line 1 of Table 1.  

 POF OF ASDF 
Scene without false target 0.35±0.22 0.66±0.10 0.95±0.01 
Scene with false target 0.27±0.22 0.60±0.12 0.95±0.01 

Table 1. Performance of correlation filters in terms of DC. 
It can be seen that the proposed adaptive filter yields the best performance in terms of 
discrimination capability.  
Next, we place a false object into the input scene, as it is shown in Fig. 4 (a). The 
performance of the correlation filters are given in line 2 of Table 1. One can observe that the 
ASDF filter yields the best performance with respect to the DC. Figure 4(b) shows the 
intensity distribution of the correlation plane obtained with the ASDF filter.  

        
 (a)   (b) 
Fig. 4. (a)  Test scene, (b) correlation intensity plane obtained with the ASDF filter. 
Now we investigate tolerance of the correlation filters to small geometric image distortions. 
Several methods have been proposed to improve pattern recognition in the presence of such 
distortions. These methods can be broadly classified into two groups. The first class 
concerns formally with 2-D scaling and rotation distortions. Such methods include space-
variant transforms and circular harmonic functions (Arsenault & Hsu, 1983). The second 
class of filters uses training images that are sufficiently descriptive and representative of the 
expected distortions. The proposed method is based on the second approach. In our 
experiments, geometric distortion by means of rotation is investigated. Distorted versions of 
the target shown in Fig. 2(a) are used. The step and the range of object rotation are 1 deg and 
[0, 30], respectively. The ASDF filter is designed with seven versions of the object rotated by 
0, 5, 10, 15, 20, and 25 degrees and the background scene shown in Fig. 2(b). After 30 
iterations, the obtained ASDF filter yields DC=0.92. The test scene with three targets rotated 
by 4, 14, and 20 degrees is shown in Fig. 5(a). Figure 5(b) shows the intensity distribution of 
the correlation plane obtained with the ASDF filter. 
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 (a)         (b) 
Fig. 5. (a)  Test scene, (b) correlation intensity plane obtained with the ASDF filter. 

The performance of the ASDF and MACE filters is given in Figs. 6 and 7, respectively. The 
MACE filter was synthesized with the same objects as the ASDF filter. Note that the 
conventional SDF filter fails to detect the rotated target in the cluttered background. 

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation angle (degrees)

D
is

cr
im

in
at

io
n 

C
ap

ab
ili

ty

Fig. 6.  Tolerance of the ASDF filter to rotation.   



Vision Systems - Segmentation and Pattern Recognition 524

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation degree (angle) 

D
is

cr
im

in
at

io
n 

C
ap

ab
ili

ty

Fig. 7.  Tolerance of the MACE filter to rotation.   
We can see that the proposed filter possesses much better tolerance to rotation than the 
MACE filter. The ASDF filter adapts well by training to rotations of the target. Obviously, 
the preceding approach can be easily extended to any small geometric distortion of a target.  
Finally we test robustness of correlation filters to additive sensor’s noise that is always 
present in input scenes. The test scene shown in Fig. 5 (a) is used. The scene is corrupted by 
additive zero-mean white Gaussian noise while the standard deviation of additive noise is 
varied. Figure 8(a) shows the input scene corrupted by additive zero-mean white Gaussian 
noise with the standard deviation of 40. Figure 8(b) shows the intensity distribution of the 
correlation plane obtained with the ASDF filter.  

         
 (a)     (b) 
Fig. 8. (a)  Input scene corrupted by zero-mean additive white noise with a standard 
deviation of 40, (b) correlation intensity plane obtained with the ASDF filter. 
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The tolerance of correlation filters to additive noise in terms of the DC is presented in Fig. 9.  
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Fig. 9.  Tolerance of correlation filters to additive white noise.   
Since the synthesis of the ASDF filter takes into account additive noise by training with a 
noise realization, the filter provides a good robustness to the noise. In contrast, the 
performance of the MACE filter deteriorates quickly when signal noise fluctuation increases. 

3. Adaptive Hybrid Optodigital Systems 

Real-time pattern recognition systems based on correlation were vastly investigated in the 
last decades. This is because correlation filters can be implemented optically or by using 
hybrid (optodigital) systems exploiting the parallelism inherent in optical systems. These 
systems are able to carry out the recognition process at a high rate. Hybrid systems with the 
use of liquid crystal displays (LCDs) as spatial light modulators (SLMs) are flexible. 
Optodigital systems for real-time pattern recognition can be implemented on the basis of 
two principal architectures: 4f correlator (4FC) (VanderLugt, 1964) and joint transform 
correlator (JTC) (Weaver & Goodman, 1966). The advantage of the JTC compared to the 4FC 
is that the former is less sensitive to misalignments of an optical setup such as scale, 
horizontal, vertical, and azimuthal differences between the input and frequency planes. The 
SDF filters for distortion invariant pattern recognition were originally introduced on the 
basis of the 4FC. Many efforts were made to find an effective implementation of SDF filters 
with the JTC. In this chapter we describe an iterative algorithm to design adaptive 
correlation filters for the JTC architecture. The proposed algorithm takes into account 
calibration lookup tables of all optoelectronic devices used in real experiments.   

3.1. Joint Transform Correlators 

The JTC introduced in 1966 by Weaver and Goodman is shown in Fig. 10.  
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Fig. 10. Block diagram of the classical JTC. 

The input plane (joint image) ( , )f x y  is composed by the scene image ( , )s x y  alongside the 
reference image ( , )t x y  separated by a distance Δ  each from origin. The joint image 
(displayed in LCD1, see Fig. 10) can be written as 

( , ) ( , ) ( , )f x y s x y t x y= + Δ + − Δ ,  (14) 

and its Fourier transform (generated by L1) 

( , ) ( , )exp( ) ( , )exp( )F u S u i T u iν ν ν ν ν= Δ + − Δ . (15) 

The joint power spectrum (captured with CCD camera 1) is given by  

2 2 2

* *

( , ) ( , ) ( , ) ( , )

( , ) ( , )exp( 2 ) ( , ) ( , )exp( 2 ).

E u F u S u T u

S u T u i T u S u i

ν ν ν ν

ν ν ν ν ν ν

= = +

+ Δ + − Δ
 (16) 

Applying the inverse Fourier transform to Eq. (16) (by action of L4) we obtain 

( , ) ( , ) ( , ) ( , ) ( , )

( , 2 ) ( , 2 ) ( , 2 ) ( , 2 )

e x y s x y s x y t x y t x y
s x y t x y s x y t x y

= ⊗ + ⊗
+ + Δ ⊗ + Δ + − Δ ⊗ − Δ

. (17) 

We can see that the autocorrelations of the scene and target images mainly contribute at the 
origin, whereas the cross-correlation terms, which are the terms of interest, are placed at the 
distances 2± Δ . A drawback of the classical JTC is its low tolerance to geometrical distortions 
of objects and to noise when objects are embedded in a nonstationary background noise. 
Assumes that the input image ( , )f x y  contains the input objects ( , )s x y  (desired and 
nondesired) and the non-overlapping background ( , )b x y :

( , ) ( , ) ( , ) ( , ),f x y s x y b x y t x y= + Δ + + Δ + − Δ  (18) 

where

0 0( , ) ( , ) ( , ),b x y w x x y y b x y= − −  (19) 

and 0 0( , )x y  are unknown coordinates of the target in the input scene; 0 0( , )w x x y y− −  is a 
binary function defined as 
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0 0

0, within the object area
( , )

1, otherwise
w x x y y− − = . (20) 

The joint power spectrum is given by 
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 (21) 

Note that the joint power spectrum contains the Fourier transforms with phase the factors of 
exp( 2 )i ν± Δ  corresponding to the cross-correlation terms between the target and the input 
objects, the target and the background, and the input objects and the background. The later 
correlation term severely affects the DC. 
To improve the correlation performance of the JTC, several partial solutions were proposed: 
the nonlinear JTC (Javidi, 1989) and the fringe-adjusted JTC (Alam & Karim, 1993). In the 
former a nonlinear element-wise transformation of the joint power spectrum is carried out 
before applying the inverse Fourier transform. In the latter the joint power spectrum is 
multiplied by the frequency response of a real-valued filter before applying the inverse 
Fourier transform. These two approaches yield a better performance compared to that of the 
classical JTC in terms of correlation peak intensity, correlation width, and discrimination 
capability. 

3.2. Adaptive Joint Transform Correlator 

We wish to design a JTC that ensures a high correlation peak corresponding to the target 
while suppressing possible false peaks. To achieve a good recognition of the target, it is 
necessary to reduce correlation function levels at all sidelobes except at the origin of the 
correlation plane, where the constraint on the peak value must be meet. For a given object to 
be recognized and for false objects and background to be rejected, an iterative algorithm is 
used. At each iteration, the algorithm suppresses the highest sidelobe peak and therefore 
monotonically increases the value of discrimination capability until a prespecified value is 
reached. With the help of adaptive SDF filters, a given value of the DC can be achieved.  
The first step is to carry out the joint transform correlation between the background and a 
basic SDF filter, which is initially trained only with the target. Next the intensity maximum 
of the filter output is set as the origin, and around the origin we form a new object to be 
rejected from the background. The created object is added to the false class of objects. Now a 
two-class recognition problem is utilized to design a new SDF filter; that is, the true class 
contains only the target and the false class consists of the false-class objects. The described 
iterative procedure is repeated until a given value of DC is obtained. Note that if other false-
objects are known, they can be directly included in the false class and used for the design of 
the adaptive filter. A block diagram of the procedure is shown in Fig. 11.  



Vision Systems - Segmentation and Pattern Recognition 528

Fig. 11. Block diagram of the iterative algorithm for the design of the adaptive JTC. 
The proposed algorithm consists of the following steps: 

1. Create a basic SDF filter trained only with the target. 
2. Create the input image (see Eq. (14)) by composing the designed SDF filter and the 

image to be rejected (nondesired objects or a background). 
3. Carry out the joint transform correlation including calibration lookup tables of all 

optoelectronics devices such as a real SLM and a CCD camera. 
4. Calculate the DC using Eq. (13). 
5. If the value of the DC is greater or equal to the desired value, then the filter design 

procedure is finished; otherwise, go to the next step. 
6. Create a new object to be rejected from the background. The origin of the object is 

at the highest sidelobe position in the intensity correlation plane. The region of 
support of the new object is the union of the shapes of all objects involved in the 
process (desired and non-desired objects). The object is included in the false class of 
objects.

7. Design a new SDF filter utilizing the two-class recognition problem. The true class 
contains only the target and the false class consists of the false class objects. Go to 
step 2. 

3.3. Optodigital Implementation 

Twisted nematic LCDs are widely used for real-time pattern recognition. Their important 
characteristics are as follows: 

1. They are electrically controlled with standard video signals. 
2. They can operate as amplitude-only or phase-only modulators by changing the 

direction of the polarization vector of the incident light (Lu & Saleh, 1990). 
3. They operate at the speed of conventional television standards. 
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4. They can handle a dynamic range of [ ]0,255  for amplitude modulation and a 

phase range of [ ],π π−  for phase modulation. 
In general, the impulse response of SDF filters is a bipolar image. To introduce these kinds 
of images into spatial light modulators we use two methods.
First method is called bipolar decomposition method. Assume that ( , )h x y  is a bipolar 
impulse response: 

( , ) ( , ) ( , ),h x y h x y h x y+ −= −  (22) 

where

( , ), ( , ) 0
( , )

0,

h x y h x y
h x y

otherwise
+ >

= , (23) 

and

( , ), ( , ) 0
( , )

0,

h x y h x y
h x y

otherwise
− ≤

= . (24) 

The intensity cross-correlation between ( , )s x y  and ( , )h x y  may be written as follows: 
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 (25) 

It can be seen from Eq. (25), that with the help of decomposition and simple postprocessing, 
how to obtain the output of the JTC when the reference image has positive and negative 
values. Note that with the bipolar decomposition method two independent optical 
correlations are needed. 
The second method is referred to as constant addition method. The idea of the method is to 
transform the input composed bipolar image into an input composed nonnegative image. It 
can be easily done by adding a bias value to the input bipolar image. Next the joint 
transform correlation with the input composed nonnegative image is performed. Simple 
postprocessing is required to obtain the output of the JTC. Note that we need only one 
optical correlation. The transformed nonnegative joint image can be written as 

( ) ( ) ( ), , ,f x y s x y h x y= + Δ + − Δ , (26) 

where ( , ) ( , )s x y s x y c= +  and, ( , ) ( , )h x y h x y c= + , ( ),s x y  is the scene image, ( , )h x y  is the 

bipolar image, and [ ]( , )c MIN h x y=  is a constant value. The intensity output of the JTC with 
the new joint image is given by 
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The two latter terms of Eq. (27) are the terms of interest. The intensity of the cross-
correlation between ( , )s x y  and ( , )h x y  can be computed from the intensity of the cross 
correlation between nonnegative images as follows: 

[ ] [ ] [ ]

{ } [ ]{ }
[ ]{ }

222

2 2 2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , )

2 ( , ) ( , ) 2 (

s x y h x y s x y c c h x y c c s x y c h x y c

s x y h x y h x y c s x y c c c

s x y h x y h x y c s x y h x y s x y c

s x y h x y c c h x

⊗ = + − ⊗ + − = − ⊗ −

= ⊗ + ⊗ + ⊗ + ⊗

− ⊗ ⊗ − ⊗ ⊗

+ ⊗ ⊗ + [ ]{ }
[ ]{ } [ ][ ]{ }

, ) ( , )

2 ( , ) 2 ( , ) .

y c s x y c

h x y c c c s x y c c c

⊗ ⊗

− ⊗ ⊗ − ⊗ ⊗

 (28) 

Further simplifying, we can write  
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− ⊗ + ⊗ + − −
 (29) 

Here, ( , ) ( , )s x y h x y⊗  can be obtained by applying the pointwise square root to the 

intensity
2

( , ) ( , )s x y h x y⊗ , constants 1 ( , )C h x y c= ⊗ , 2 ( , )C s x y c= ⊗ , and 3C c c= ⊗  are 

computed in the following way: 

{ }
[ ]{ }
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2
2

( , ) ( , ) ( , ) ,

( , ) ,

x y x yC h x y c c h x y d d c h x y

C c s x y c

α α τ τ τ τ α

α α

+∞ +∞

−∞ −∞

= ⊗ = + + ≈

≈ ≈

 (30) 

where, α  is a normalization factor and the symbol “ [ ] ” denotes the summation of all 

elements of the image. 

3.4. Experimental Results 

First we characterized optoelectronics devices such as a twisted neimatic LCD of 800x600 
pixels and a monochrome CCD camera of 640x480 pixels. The LCD worked in the 
amplitude-only modulation regime. Figure 12 shows the experimental calibration lookup 
table of the intensity response of the LCD captured with the CCD camera. 
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Fig. 12. Intensity response of a twisted neimatic LCD captured with a CCD camera. 
It can be seen from Fig. 12 that a gray-scale dynamic range is [0-48]. It is interesting to note 
that in this range the plot is nonlinear due quantization effects, and it is well approximated 

with a kth-law nonlinearity 
k2InputOutput

−
=  when 7.0k = . We used this information 

in the iterative process of the adaptive JTC design.  
The size of the input images used in our experiments is 128 x 128 pixels. The signal rage is 
[0, 255]. The input scene is shown in Fig. 13 (a).  

          
 (a)  (b) 
Fig. 13. (a) Input scene containing two objects with similar shapes but with different 
information content; (b) bipolar reference image obtained with the proposed method. 

The scene contains two objects with a similar shape and size (approximately 44x28 pixels) 
but with different gray-level contents. The target is the upper butterfly with black- wings. 
The objects are embedded into an aerial picture at unknown coordinates. The performance 
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of the adaptive JTC in the design process after eight iterations reaches DC = 0.95. The 
obtained bipolar reference image is shown in Fig. 13 (b).  

(a)

(b)
Fig. 14. Computer simulation results obtained for the input scene in Fig. 13 (a) with: (a) 

binary JTC, (b) fringe-adjusted JTC.

We compare the performance of proposed adaptive JTC with those of the binary JTC and 
the fringe-adjusted JTC. The intensity correlation planes obtained with latter two systems 
are shown in Fig. 14. We see that the binary JTC and the fringe-adjusted JTC fail to 
discriminate the target against the false object with a similar shape.  Next we test digitally 
the recognition performance with the adaptive JTC. The correlation intensity plane obtained 
with the adaptive JTC for the input scene in Fig. 13 (a) is shown in Fig. 15. 
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Fig. 15. Computer simulation result obtained for the input scene with the adaptive JTC. 

Note that the target is clearly detected. The adaptive JTC architecture can reliably detect a 
target embedded in a noisy background even if the target presents small geometric image 
distortions. We used 50 statistical trials of our experiment for different positions of the 
target. With 95% confidence, the DC obtained in computer simulation is equal to 0.82±0.003. 

Bipolar Decomposition Method Results 

The first optodigital experiment is based on the bipolar decomposition method. The 
reference image in Fig. 13(b) has real positive and negative values. We decompose this 
image into two nonnegative images (see Eqs. (22)-(24)). Two experiments are performed. In 
the first experiment the input scene is composed with the positive part of the reference 
image and the joint transform correlation is carried out. The experiment is repeated with the 
negative part of the reference image. The intensity correlation plane obtained after the 
postprocessing given in Eq. (25) is shown in Fig. 16. The DC obtained in the experiment is 
equal to 0.78. 

Constant Addition Method Results 

The second optodigital experiment is based on the constant addition method described. We 
use the input image and the reference image shown in Fig. 13. The SLM has a finite size (less 
than the size of the optical lens), and, after adding a high constant bias to the joint image, the 
signal at the plane of the SLM may be considered as a signal masked by a rectangular 
window.
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 (a)  (b) 
Fig. 16. Cross-correlation intensity plane obtained with bipolar decomposition method: (a) 
intensity plane, (b) intensity distribution. 

The joint image formed for the constant addition method is shown in Fig. 17. 

Fig. 17. Joint image formed for the constant addition method. 

The Fourier transform of such a signal is the convolution between the spectrum of the joint 
image and a sinc function (Fourier transform of the rectangular window). Actually, the sinc 
function possesses high sidelobes that may severely affect the joint power spectrum. To 
avoid these effects, the input joint image is masked by a window with smoothed edges. 
Next we calculate all needed constants 1C , 2C , and 3C  given in Eq. (30). Figure 12 gives 
the relationship between a dynamic range of the used optodigital LCD and CCD camera and 
a digital range of a signal. Whereas digital images possess a range of [0-255] gray-scale 
levels, the signals in the optodigital domain have a range of [0-48] levels. We need to scale 
all images and the constant bias involved in the optodigital setup. The needed constants are 
equal to 1 31.75C = , 2 23.03C = , and 3 40C = . The α  value can be estimated as 1/ csα = ,
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where s  is the number of image pixels. The cross-correlation intensity plane obtained in the 
optodigital JTC after postprocessing is shown in Fig. 18.  

 (a)  (b) 
Fig. 18. Cross-correlation plane obtained with constant addition method; (a) intensity plane, 
(b) intensity distribution. 

One can observe that the target is successfully recognized with DC=0.648. Finally, note that 
this method requires only one optical correlation, whereas the bipolar decomposition 
method uses two correlations to reconstruct the desired output. 

4. Conclusion 

Adaptive pattern recognition is still in state of rapid evolution. In this chapter we proposed 
digital and hybrid optodigital systems designed on the base of adaptive correlation filters to 
improve recognition of objects in cluttered backgrounds. It was shown that the proposed 
iterative filter design algorithms with a few training iterations helps us to take the control 
over the whole correlation plane. The digital systems are based on iterative training of the 
SDF filters. The hybrid systems additionally take into account real characteristics of used 
optoelectronics devices. The digital systems can be easily implemented in a computer, 
whereas the hybrid systems are able to provide real-time pattern recognition. The computer 
simulation and experimental results demonstrated a good performance of the proposed 
filters for pattern recognition comparing with known correlation filters. The suggested 
filters possess high scene-adaptivity, good robustness to small geometric image distortions 
and input noise.  
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